
 Chapter 4

MIPS-Style Alpha Instruction Descriptions

4.1 Instruction Set Overview

This chapter describes the instructions implemented by the Alpha architecture. The instruction
set is divided into the following sections:

Within each major section, closely related instructions are combined into groups and described
together.

The instruction group description is composed of the following:

• The group name

• The format of each instruction in the group, which includes the name, access type, and
data type of each instruction operand

• The operation of the instruction

• Exceptions specific to the instruction

• The instruction mnemonic and name of each instruction in the group

Instruction Type Section

Integer load and store 4.2

Integer control 4.3

Integer arithmetic 4.4

Logical and shift 4.5

Byte manipulation 4.6

Floating-point load and store 4.7

Floating-point control 4.8

Floating-point branch 4.9

Floating-point operate 4.10

Miscellaneous 4.11

VAX compatibility 4.12

Multimedia (graphics and video) 4.13
Instruction Descriptions 4–1

• Qualifiers specific to the instructions in the group

• A description of the instruction operation

• Optional programming examples and optional notes on the instruction

4.1.1 Subsetting Rules

An instruction that is omitted in a subset implementation of the Alpha architecture is not per-
formed in either hardware or PALcode. System software may provide emulation routines for
subsetted instructions.

4.1.2 Floating-Point Subsets

Floating-point support is optional on an Alpha processor. An implementation that supports
floating-point must implement the following:

• The 32 floating-point registers

• The Floating-point Control Register (FPCR) and the instructions to access it

• The floating-point branch instructions

• The floating-point copy sign (CPYSx) instructions

• The floating-point convert instructions

• The floating-point conditional move instruction (FCMOV)

• The S_floating and T_floating memory operations

Software Note:
A system that will not support floating-point operations is still required to provide the 32
floating-point registers, the Floating-point Control Register (FPCR) and the instructions to
access it, and the T_floating memory operations if the system intends to support the
OpenVMS Alpha operating system. This requirement facilitates the implementation of a
floating-point emulator and simplifies context-switching.

In addition, floating-point support requires at least one of the following subset groups:

1. VAX Floating-point Operate and Memory instructions (F_ and G_floating).

2. IEEE Floating-point Operate instructions (S_ and T_floating). Within this group, an
implementation can choose to include or omit separately the ability to perform IEEE
rounding to plus infinity and minus infinity.

Note:
If one instruction in a group is provided, all other instructions in that group must be
provided. An implementation with full floating-point support includes both groups; a
subset floating-point implementation supports only one of these groups. The individual
instruction descriptions indicate whether an instruction can be subsetted.
 4–2 Alpha Architecture Handbook

lt dis-
4.1.3 Software Emulation Rules

General-purpose layered and application software that executes in User mode may assume that
certain loads (LDL, LDQ, LDF, LDG, LDS, and LDT) and certain stores (STL, STQ, STF,
STG, STL, and STT) of unaligned data are emulated by system software. General-purpose lay-
ered and application software that executes in User mode may assume that subsetted
instructions are emulated by system software. Frequent use of emulation may be significantly
slower than using alternative code sequences.

Emulation of loads and stores of unaligned data and subsetted instructions need not be pro-
vided in privileged access modes. System software that supports special-purpose dedicated
applications need not provide emulation in User mode if emulation is not needed for correct
execution of the special-purpose applications.

4.1.4 Opcode Qualifiers

Some Operate format and Floating-point Operate format instructions have several variants. For
example, for the VAX formats, Add F_floating (ADDF) is supported with and without float-
ing underflow enabled and with either chopped or VAX rounding. For IEEE formats, IEEE
unbiased rounding, chopped, round toward plus infinity, and round toward minus infinity can
be selected.

The different variants of such instructions are denoted by opcode qualifiers, which consist of a
slash (/) followed by a string of selected qualifiers. Each qualifier is denoted by a single char-
acter as shown in Table 4–1. The opcodes for each qualifier are listed in Appendix C.

The default values are normal rounding, exception completion disabled, inexact resu
abled, floating underflow disabled, and integer overflow disabled.

Table 4–1: Opcode Qualifiers

Qualifier Meaning

C Chopped rounding

D Rounding mode dynamic

M Round toward minus infinity

I Inexact result enable

S Exception completion enable

U Floating underflow enable

V Integer overflow enable
Instruction Descriptions 4–3

4.2 Memory Integer Load/Store Instructions

The instructions in this section move data between the integer registers and memory.

They use the Memory instruction format. The instructions are summarized in Table 4–2.

Table 4–2: Memory Integer Load/Store Instructions

Mnemonic Operation

LDA Load Address

LDAH Load Address High

LDBU Load Zero-Extended Byte from Memory to Register

LDL Load Sign-Extended Longword

LDL_L Load Sign-Extended Longword Locked

LDQ Load Quadword

LDQ_L Load Quadword Locked

LDQ_U Load Quadword Unaligned

LDWU Load Zero-Extended Word from Memory to Register

STB Store Byte

STL Store Longword

STL_C Store Longword Conditional

STQ Store Quadword

STQ_C Store Quadword Conditional

STQ_U Store Quadword Unaligned

STW Store Word
 4–4 Alpha Architecture Handbook

4.2.1 Load Address

Format:

Operation:
 Ra ← Rbv + SEXT(disp) !LDA
 Ra ← Rbv + SEXT(disp*65536) !LDAH

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

The virtual address is computed by adding register Rb to the sign-extended 16-bit displace-
ment for LDA, and 65536 times the sign-extended 16-bit displacement for LDAH. The 64-bit
result is written to register Ra.

LDAx Ra.wq,disp.ab(Rb.ab) !Memory format

None

LDA Load Address

LDAH Load Address High

None
Instruction Descriptions 4–5

4.2.2 Load Memory Data into Integer Register

Format:

Operation:
va ← {Rbv + SEXT(disp)}

 CASE
 big_endian_data: va’ ← va XOR 0002 !LDQ

 big_endian_data: va’ ← va XOR 1002 !LDL

 big_endian_data: va’ ← va XOR 1102 !LDWU

 big_endian_data: va’ ← va XOR 1112 !LDBU

 little_endian_data: va’ ← va
 ENDCASE

 Ra ← (va’)<63:0> !LDQ
 Ra ← SEXT((va’)<31:0>) !LDL
 Ra ← ZEXT((va’)<15:0>) !LDWU
 Ra ← ZEXT((va’)<07:0>) !LDBU

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
The virtual address is computed by adding register Rb to the sign-extended 16-bit displace-
ment. For a big-endian access, the indicated bits are inverted, and any memory management
fault is reported for va (not va’).

LDx Ra.wq,disp.ab(Rb.ab) !Memory format

Access Violation

Alignment

Fault on Read

Translation Not Valid

LDBU Load Zero-Extended Byte from Memory to Register

LDL Load Sign-Extended Longword from Memory to Register

LDQ Load Quadword from Memory to Register

LDWU Load Zero-Extended Word from Memory to Register

None
 4–6 Alpha Architecture Handbook

read a
gions
In the case of LDQ and LDL, the source operand is fetched from memory, sign-extended, and
written to register Ra.

In the case of LDWU and LDBU, the source operand is fetched from memory, zero-extended,
and written to register Ra.

In all cases, if the data is not naturally aligned, an alignment exception is generated.

Notes:

• The word or byte that the LDWU or LDBU instruction fetches from memory is placed
in the low (rightmost) word or byte of Ra, with the remaining 6 or 7 bytes set to zero.

• Accesses have byte granularity.

• For big-endian access with LDWU or LDBU, the word/byte remains in the rightmost
part of Ra, but the va sent to memory has the indicated bits inverted. See Operation sec-
tion, above.

• No sparse address space mechanisms are allowed with the LDWU and LDBU instruc-
tions.

Implementation Notes:

• The LDWU and LDBU instructions are supported in hardware on Alpha implementa-
tions for which the AMASK instruction returns bit 0 set. LDWU and LDBU are sup-
ported with software emulation in Alpha implementations for which AMASK does not
return bit 0 set. Software emulation of LDWU and LDBU is significantly slower than
hardware support.

• Depending on an address space region’s caching policy, implementations may
(partial) cache block in order to do word/byte stores. This may only be done in re
that have memory-like behavior.

• Implementations are expected to provide sufficient low-order address bits and
length-of-access information to devices on I/O buses. But, strictly speaking, this is out-
side the scope of architecture.
Instruction Descriptions 4–7

4.2.3 Load Unaligned Memory Data into Integer Register

Format:

Operation:
 va ← {{Rbv + SEXT(disp)} AND NOT 7}
 Ra ← (va)<63:0>

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
The virtual address is computed by adding register Rb to the sign-extended 16-bit displace-
ment, then the low-order three bits are cleared. The source operand is fetched from memory
and written to register Ra.

LDQ_U Ra.wq,disp.ab(Rb.ab) !Memory format

Access Violation

Fault on Read

Translation Not Valid

LDQ_U Load Unaligned Quadword from Memory to Register

None
 4–8 Alpha Architecture Handbook

4.2.4 Load Memory Data into Integer Register Locked

Format:

Operation:
va ← {Rbv + SEXT(disp)}

CASE
 big_endian_data: va’ ← va XOR 0002 ! LDQ_L

 big_endian_data: va’ ← va XOR 1002 ! LDL_L

 little_endian_data: va’ ← va ! LDL_L
ENDCASE

lock_flag ← 1
locked_physical_address ← PHYSICAL_ADDRESS(va)

Ra ← SEXT((va’)<31:0>) ! LDL_L
Ra ← (va)<63:0> ! LDQ_L

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

The virtual address is computed by adding register Rb to the sign-extended 16-bit displace-
ment. For a big-endian longword access, va<2> (bit 2 of the virtual address) is inverted, and
any memory management fault is reported for va (not va’). The source operand is fetched
from memory, sign-extended for LDL_L, and written to register Ra.

LDx_L Ra.wq,disp.ab(Rb.ab) !Memory format

Access Violation

Alignment

Fault on Read

Translation Not Valid

LDL_L Load Sign-Extended Longword from Memory to Register
Locked

LDQ_L Load Quadword from Memory to Register Locked

None
Instruction Descriptions 4–9

onal, or

ue is
lock)

ysical

REI,
-
LE
r store
ces-
at fall
g is

shared
mory
When a LDx_L instruction is executed without faulting, the processor records the target physi-
cal address in a per-processor locked_physical_address register and sets the per-processor
lock_flag.

If the per-processor lock_flag is (still) set when a STx_C instruction is executed (accessing
within the same 16-byte naturally aligned block as the LDx_L), the store occurs; otherwise, it
does not occur, as described for the STx_C instructions. The behavior of an STx_C instruction
is UNPREDICTABLE, as described in Section 4.2.5, when it does not access the same 16-byte
naturally aligned block as the LDx_L.

Processor A causes the clearing of a set lock_flag in processor B by doing any of the following
in B’s locked range of physical addresses: a successful store, a successful store_conditi
executing a WH64 instruction that modifies data on processor B. A processor’s locked range is
the aligned block of 2**N bytes that includes the locked_physical_address. The 2**N val
implementation dependent. It is at least 16 (minimum lock range is an aligned 16-byte b
and is at most the page size for that implementation (maximum lock range is one ph
page).

A processor’s lock_flag is also cleared if that processor encounters a CALL_PAL
CALL_PAL rti, or CALL_PAL rfe instruction. It is UNPREDICTABLE whether or not a pro
cessor’s lock_flag is cleared on any other CALL_PAL instruction. It is UNPREDICTAB
whether a processor’s lock_flag is cleared by that processor executing a normal load o
instruction. It is UNPREDICTABLE whether a processor’s lock_flag is cleared by that pro
sor executing a taken branch (including BR, BSR, and Jumps); conditional branches th
through do not clear the lock_flag. It is UNPREDICTABLE whether a processor’s lock_fla
cleared by that processor executing a WH64 or ECB instruction.

The sequence:

LDx_L
Modify
STx_C
BEQ xxx

when executed on a given processor, does an atomic read-modify-write of a datum in
memory if the branch falls through. If the branch is taken, the store did not modify me
and the sequence may be repeated until it succeeds.

Notes:

• LDx_L instructions do not check for write access; hence a matching STx_C may take
an access-violation or fault-on-write exception.

Executing a LDx_L instruction on one processor does not affect any architecturally
visible state on another processor, and in particular cannot cause an STx_C on another
processor to fail.

LDx_L and STx_C instructions need not be paired. In particular, an LDx_L may be
followed by a conditional branch: on the fall-through path an STx_C is executed,
whereas on the taken path no matching STx_C is executed.
 4–10 Alpha Architecture Handbook

he lock
If two LDx_L instructions execute with no intervening STx_C, the second one
overwrites the state of the first one. If two STx_C instructions execute with no
intervening LDx_L, the second one always fails because the first clears lock_flag.

• Software will not emulate unaligned LDx_L instructions.

• If the virtual and physical addresses for a LDx_L and STx_C sequence are not within
the same naturally aligned 16-byte sections of virtual and physical memory, that
sequence may always fail, or may succeed despite another processor’s store to t
range; hence, no useful program should do this.

• If any other memory access (ECB, LDx, LDQ_U, STx, STQ_U, WH64) is executed on
the given processor between the LDx_L and the STx_C, the sequence above may
always fail on some implementations; hence, no useful program should do this.

• If a branch is taken between the LDx_L and the STx_C, the sequence above may
always fail on some implementations; hence, no useful program should do this.
(CMOVxx may be used to avoid branching.)

• If a subsetted instruction (for example, floating-point) is executed between the LDx_L
and the STx_C, the sequence above may always fail on some implementations because
of the Illegal Instruction Trap; hence, no useful program should do this.

• If an instruction with an unused function code is executed between the LDx_L and the
STx_C, the sequence above may always fail on some implementations because an
instruction with an unused function code is UNPREDICTABLE.

• If a large number of instructions are executed between the LDx_L and the STx_C, the
sequence above may always fail on some implementations because of a timer interrupt
always clearing the lock_flag before the sequence completes; hence, no useful program
should do this.

• Hardware implementations are encouraged to lock no more than 128 bytes. Software
implementations are encouraged to separate locked locations by at least 128 bytes from
other locations that could potentially be written by another processor while the first
location is locked.

• Execution of a WH64 instruction on processor A to a region within the lock range of
processor B, where the execution of the WH64 changes the contents of memory, causes
the lock_flag on processor B to be cleared. If the WH64 does not change the contents of
memory on processor B, it need not clear the lock_flag.

Implementation Notes:
Implementations that impede the mobility of a cache block on LDx_L, such as that which
may occur in a Read for Ownership cache coherency protocol, may release the cache block
and make the subsequent STx_C fail if a branch-taken or memory instruction is executed
on that processor.

All implementations should guarantee that at least 40 non-subsetted operate instructions
can be executed between timer interrupts.
Instruction Descriptions 4–11

4.2.5 Store Integer Register Data into Memory Conditional

Format:

Operation:
va ← {Rbv + SEXT(disp)}

CASE
 big_endian_data: va’ ← va XOR 0002 ! STQ_C

 big_endian_data: va’ ← va XOR 1002 ! STL_C

 little_endian_data: va’ ← va ! STL_C
ENDCASE

IF lock_flag EQ 1 THEN
 (va’)<31:0> ← Rav<31:0> ! STL_C
 (va’) ← Rav ! STQ_C
Ra ← lock_flag
lock_flag ← 0

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
The virtual address is computed by adding register Rb to the sign-extended 16-bit displace-
ment. For a big-endian longword access, va<2> (bit 2 of the virtual address) is inverted, and
any memory management fault is reported for va (not va’).

If the lock_flag is set and the address meets the following constraints relative to the address
specified by the preceding LDx_L instruction, the Ra operand is written to memory at this
address. If the address meets the following constraints but the lock_flag is not set, a zero is
returned in Ra and no write to memory occurs. The constraints are:

STx_C Ra.mx,disp.ab(Rb.ab) !Memory format

Access Violation

Fault on Write

Alignment

Translation Not Valid

STL_C Store Longword from Register to Memory Conditional

STQ_C Store Quadword from Register to Memory Conditional

None
 4–12 Alpha Architecture Handbook

t lock
ly one

n the
e
ction
er pro-

he lock
• The computed virtual address must specify a location within the naturally aligned
16-byte block in virtual memory accessed by the preceding LDx_L instruction.

• The resultant physical address must specify a location within the naturally aligned
16-byte block in physical memory accessed by the preceding LDx_L instruction.

If those addressing constraints are not met, it is UNPREDICTABLE whether the STx_C
instruction succeeds or fails, regardless of the state of the lock_flag, unless the lock_flag is
cleared as described in the next paragraph.

Whether or not the addressing constraints are met, a zero is returned and no write to memory
occurs if the lock_flag was cleared by execution on a processor of a CALL_PAL REI,
CALL_PAL rti, CALL_PAL rfe, or STx_C, after the most recent execution on that processor
of a LDx_L instruction (in processor issue sequence).

In all cases, the lock_flag is set to zero at the end of the operation.

Notes:

• Software will not emulate unaligned STx_C instructions.

• Each implementation must do the test and store atomically, as illustrated in the follow-
ing two examples. (See Section 5.6.1 for complete information.)

– If two processors attempt STx_C instructions to the same lock range and tha
range was accessed by both processors’ preceding LDx_L instructions, exact
of the stores succeeds.

– A processor executes a LDx_L/STx_C sequence and includes an MB betwee
LDx_L to a particular address and the successful STx_C to a different address (on
that meets the constraints required for predictable behavior). That instru
sequence establishes an access order under which a store operation by anoth
cessor to that lock range occurs before the LDx_L or after the STx_C.

• If the virtual and physical addresses for a LDx_L and STx_C sequence are not within
the same naturally aligned 16-byte sections of virtual and physical memory, that
sequence may always fail, or may succeed despite another processor’s store to t
range; hence, no useful program should do this.

• The following sequence should not be used:

 try_again: LDQ_L R1, x
 <modify R1>
 STQ_C R1, x
 BEQ R1, try_again

That sequence penalizes performance when the STQ_C succeeds, because the
sequence contains a backward branch, which is predicted to be taken in the Alpha
architecture. In the case where the STQ_C succeeds and the branch will actually fall
through, that sequence incurs unnecessary delay due to a mispredicted backward
branch. Instead, a forward branch should be used to handle the failure case, as shown
in Section 5.5.2.
Instruction Descriptions 4–13

Software Note:

If the address specified by a STx_C instruction does not match the one given in the
preceding LDx_L instruction, an MB is required to guarantee ordering between the two
instructions.

Hardware/Software Implementation Note:
STQ_C is used in the first Alpha implementations to access the MailBox Pointer Register
(MBPR). In this special case, the effect of the STQ_C is well defined (that is, not
UNPREDICTABLE) even though the preceding LDx_L did not specify the address of the
MBPR. The effect of STx_C in this special case may vary from implementation to
implementation.

Implementation Notes:

A STx_C must propagate to the point of coherency, where it is guaranteed to prevent any
other store from changing the state of the lock bit, before its outcome can be determined.

If an implementation could encounter a TB or cache miss on the data reference of the
STx_C in the sequence above (as might occur in some shared I- and D-stream
direct-mapped TBs/caches), it must be able to resolve the miss and complete the store
without always failing.
 4–14 Alpha Architecture Handbook

4.2.6 Store Integer Register Data into Memory

Format:

Operation:
va ← {Rbv + SEXT(disp)}

CASE
 big_endian_data: va’ ← va XOR 0002 !STQ

 big_endian_data: va’ ← va XOR 1002 !STL

 big_endian_data: va’ ← va XOR 1102 !STW

 big_endian_data: va’ ← va XOR 1112 !STB

 little_endian_data: va’ ← va
ENDCASE

 (va’) ← Rav !STQ
 (va’)<31:00> ← Rav<31:0> !STL
 (va’)<15:00> ← Rav<15:0> !STW
 (va’)<07:00> ← Rav<07:0> !STB

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
The virtual address is computed by adding register Rb to the sign-extended 16-bit displace-
ment. For a big-endian access, the indicated bits are inverted, and any memory management
fault is reported for va (not va’).

STx Ra.rx,disp.ab(Rb.ab) !Memory format

Access Violation

Alignment

Fault on Write

Translation Not Valid

STB Store Byte from Register to Memory

STL Store Longword from Register to Memory

STQ Store Quadword from Register to Memory

STW Store Word from Register to Memory

None
Instruction Descriptions 4–15

read a
gions
The Ra operand is written to memory at this address. If the data is not naturally aligned, an
alignment exception is generated.

Notes:

• The word or byte that the STB or STW instruction stores to memory comes from the
low (rightmost) byte or word of Ra.

• Accesses have byte granularity.

• For big-endian access with STB or STW, the byte/word remains in the rightmost part of
Ra, but the va sent to memory has the indicated bits inverted. See Operation section,
above.

• No sparse address space mechanisms are allowed with the STB and STW instructions.

Implementation Notes:

• The STB and STW instructions are supported in hardware on Alpha implementations
for which the AMASK instruction returns bit 0 set. STB and STW are supported with
software emulation in Alpha implementations for which AMASK does not return bit 0
set. Software emulation of STB and STW is significantly slower than hardware support.

• Depending on an address space region’s caching policy, implementations may
(partial) cache block in order to do byte/word stores. This may only be done in re
that have memory-like behavior.

• Implementations are expected to provide sufficient low-order address bits and
length-of-access information to devices on I/O buses. But, strictly speaking, this is out-
side the scope of architecture.
 4–16 Alpha Architecture Handbook

4.2.7 Store Unaligned Integer Register Data into Memory

Format:

Operation:
va ← {{Rbv + SEXT(disp)} AND NOT 7}
(va)<63:0> ← Rav<63:0>

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
The virtual address is computed by adding register Rb to the sign-extended 16-bit displace-
ment, then clearing the low order three bits. The Ra operand is written to memory at this
address.

STQ_U Ra.rq,disp.ab(Rb.ab) !Memory format

Access Violation

Fault on Write

Translation Not Valid

STQ_U Store Unaligned Quadword from Register to Memory

None
Instruction Descriptions 4–17

4.3 Control Instructions

Alpha provides integer conditional branch, unconditional branch, branch to subroutine, and
jump instructions. The PC used in these instructions is the updated PC, as described in Section
3.1.1.

To allow implementations to achieve high performance, the Alpha architecture includes
explicit hints based on a branch-prediction model:

• For many implementations of computed branches (JSR/RET/JMP), there is a substan-
tial performance gain in forming a good guess of the expected target I-cache address
before register Rb is accessed.

• For many implementations, the first-level (or only) I-cache is no bigger than a page (8
KB to 64 KB).

• Correctly predicting subroutine returns is important for good performance. Some
implementations will therefore keep a small stack of predicted subroutine return
I-cache addresses.

The Alpha architecture provides three kinds of branch-prediction hints: likely target address,
return-address stack action, and conditional branch-taken.

For computed branches, the otherwise unused displacement field contains a function code
(JMP/JSR/RET/JSR_COROUTINE), and, for JSR and JMP, a field that statically specifies the
16 low bits of the most likely target address. The PC-relative calculation using these bits can
be exactly the PC-relative calculation used in unconditional branches. The low 16 bits are
enough to specify an I-cache block within the largest possible Alpha page and hence are
expected to be enough for branch-prediction logic to start an early I-cache access for the most
likely target.

For all branches, hint or opcode bits are used to distinguish simple branches, subroutine calls,
subroutine returns, and coroutine links. These distinctions allow branch-predict logic to main-
tain an accurate stack of predicted return addresses.

For conditional branches, the sign of the target displacement is used as a taken/fall-through
hint. The instructions are summarized in Table 4–3.

Table 4–3: Control Instructions Summary

Mnemonic Operation

BEQ Branch if Register Equal to Zero

BGE Branch if Register Greater Than or Equal to Zero

BGT Branch if Register Greater Than Zero

BLBC Branch if Register Low Bit Is Clear

BLBS Branch if Register Low Bit Is Set

BLE Branch if Register Less Than or Equal to Zero

BLT Branch if Register Less Than Zero
 4–18 Alpha Architecture Handbook

BNE Branch if Register Not Equal to Zero

BR Unconditional Branch

BSR Branch to Subroutine

JMP Jump

JSR Jump to Subroutine

RET Return from Subroutine

JSR_COROUTINE Jump to Subroutine Return

Table 4–3: Control Instructions Summary (Continued)

Mnemonic Operation
Instruction Descriptions 4–19

its are
4.3.1 Conditional Branch

Format:

Operation:
{update PC}
va ← PC + {4*SEXT(disp)}
IF TEST(Rav, Condition_based_on_Opcode) THEN
 PC ← va

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

Register Ra is tested. If the specified relationship is true, the PC is loaded with the target vir-
tual address; otherwise, execution continues with the next sequential instruction.

The displacement is treated as a signed longword offset. This means it is shifted left two bits
(to address a longword boundary), sign-extended to 64 bits, and added to the updated PC to
form the target virtual address.

The conditional branch instructions are PC-relative only. The 21-bit signed displacement gives
a forward/backward branch distance of +/– 1M instructions.

The test is on the signed quadword integer interpretation of the register contents; all 64 b
tested.

Bxx Ra.rq,disp.al !Branch format

None

BEQ Branch if Register Equal to Zero

BGE Branch if Register Greater Than or Equal to Zero

BGT Branch if Register Greater Than Zero

BLBC Branch if Register Low Bit Is Clear

BLBS Branch if Register Low Bit Is Set

BLE Branch if Register Less Than or Equal to Zero

BLT Branch if Register Less Than Zero

BNE Branch if Register Not Equal to Zero

None
 4–20 Alpha Architecture Handbook

4.3.2 Unconditional Branch

Format:

Operation:
{update PC}
Ra ← PC
PC ← PC + {4*SEXT(disp)}

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

The PC of the following instruction (the updated PC) is written to register Ra and then the PC
is loaded with the target address.

The displacement is treated as a signed longword offset. This means it is shifted left two bits
(to address a longword boundary), sign-extended to 64 bits, and added to the updated PC to
form the target virtual address.

The unconditional branch instructions are PC-relative. The 21-bit signed displacement gives a
forward/backward branch distance of +/– 1M instructions.

PC-relative addressability can be established by:

 BR Rx,L1
L1:

Notes:

• BR and BSR do identical operations. They only differ in hints to possible branch-pre-
diction logic. BSR is predicted as a subroutine call (pushes the return address on a
branch-prediction stack), whereas BR is predicted as a branch (no push).

BxR Ra.wq,disp.al !Branch format

None

BR Unconditional Branch

BSR Branch to Subroutine

None
Instruction Descriptions 4–21

4.3.3 Jumps

Format:

Operation:
{update PC}
va ← Rbv AND {NOT 3}
Ra ← PC
PC ← va

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
The PC of the instruction following the Jump instruction (the updated PC) is written to register
Ra and then the PC is loaded with the target virtual address.

The new PC is supplied from register Rb. The low two bits of Rb are ignored. Ra and Rb may
specify the same register; the target calculation using the old value is done before the new
value is assigned.

All Jump instructions do identical operations. They only differ in hints to possible branch-pre-
diction logic. The displacement field of the instruction is used to pass this information. The
four different "opcodes" set different bit patterns in disp<15:14>, and the hint operand sets
disp<13:0>.

These bits are intended to be used as shown in Table 4–4.

mnemonic Ra.wq,(Rb.ab),hint !Memory format

None

JMP Jump

JSR Jump to Subroutine

RET Return from Subroutine

JSR_COROUTINE Jump to Subroutine Return

None
 4–22 Alpha Architecture Handbook

rget
ing call

prove
ion on

nd Rb
 tar-
n bits
dings
The design in Table 4–4 allows specification of the low 16 bits of a likely longword ta
address (enough bits to start a useful I-cache access early), and also allows distinguish
from return (and from the other two less frequent operations).

Note that the above information is used only as a hint; correct setting of these bits can im
performance but is not needed for correct operation. See Section A.2.2 for more informat
branch prediction.

An unconditional long jump can be performed by:

JMP R31,(Rb),hint

Coroutine linkage can be performed by specifying the same register in both the Ra a
operands. When disp<15:14> equals ‘10’ (RET) or ‘11’ (JSR_COROUTINE) (that is, the
get address prediction, if any, would come from a predictor implementation stack), the
<13:0> are reserved for software and must be ignored by all implementations. All enco
for bits <13:0> are used by Compaq software or Reserved to Compaq, as follows:

Table 4–4: Jump Instructions Branch Prediction

disp<15:14> Meaning
Predicted
Target<15:0>

Prediction
Stack Action

00 JMP PC + {4*disp<13:0>} –

01 JSR PC + {4*disp<13:0>} Push PC

10 RET Prediction stack Pop

11 JSR_COROUTINE Prediction stack Pop, push PC

Encoding Meaning

000016 Indicates non-procedure return

000116 Indicates procedure return

All other encodings are reserved to Compaq.
Instruction Descriptions 4–23

LH;
4.4 Integer Arithmetic Instructions

The integer arithmetic instructions perform add, subtract, multiply, signed and unsigned com-
pare, and bit count operations.

Count instruction (CIX) extension implementation note:
The CIX extension to the architecture provides the CTLZ, CTPOP, and CTTZ instructions.
Alpha processors for which the AMASK instruction returns bit 2 set implement these
instructions. Those processors for which AMASK does not return bit 2 set can take an
Illegal Instruction trap, and software can emulate their function, if required. AMASK is
described in Sections 4.11.1 and D.3.

The integer instructions are summarized in Table 4–5

There is no integer divide instruction. Division by a constant can be done by using UMU
division by a variable can be done by using a subroutine. See Section A.4.2.

Table 4–5: Integer Arithmetic Instructions Summary

Mnemonic Operation

ADD Add Quadword/Longword

S4ADD Scaled Add by 4

S8ADD Scaled Add by 8

CMPEQ Compare Signed Quadword Equal

CMPLT Compare Signed Quadword Less Than

CMPLE Compare Signed Quadword Less Than or Equal

CTLZ Count leading zero

CTPOP Count population

CTTZ Count trailing zero

CMPULT Compare Unsigned Quadword Less Than

CMPULE Compare Unsigned Quadword Less Than or Equal

MUL Multiply Quadword/Longword

UMULH Multiply Quadword Unsigned High

SUB Subtract Quadword/Longword

S4SUB Scaled Subtract by 4

S8SUB Scaled Subtract by 8
 4–24 Alpha Architecture Handbook

4.4.1 Longword Add

Format:

Operation:
Rc ← SEXT((Rav + Rbv)<31:0>)

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

Register Ra is added to register Rb or a literal and the sign-extended 32-bit sum is written to
Rc.

The high order 32 bits of Ra and Rb are ignored. Rc is a proper sign extension of the truncated
32-bit sum. Overflow detection is based on the longword sum Rav<31:0> + Rbv<31:0>.

ADDL Ra.rl,Rb.rl,Rc.wq !Operate format

ADDL Ra.rl,#b.ib,Rc.wq !Operate format

Integer Overflow

ADDL Add Longword

Integer Overflow Enable (/V)
Instruction Descriptions 4–25

4.4.2 Scaled Longword Add

Format:

Operation:
CASE
 S4ADDL: Rc ← SEXT (((LEFT_SHIFT(Rav,2)) + Rbv)<31:0>)
 S8ADDL: Rc ← SEXT (((LEFT_SHIFT(Rav,3)) + Rbv)<31:0>)
ENDCASE

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
Register Ra is scaled by 4 (for S4ADDL) or 8 (for S8ADDL) and is added to register Rb or a
literal, and the sign-extended 32-bit sum is written to Rc.

The high 32 bits of Ra and Rb are ignored. Rc is a proper sign extension of the truncated 32-bit
sum.

SxADDL Ra.rl,Rb.rq,Rc.wq !Operate format

SxADDL Ra.rl,#b.ib,Rc.wq !Operate format

None

S4ADDL Scaled Add Longword by 4

S8ADDL Scaled Add Longword by 8

None
 4–26 Alpha Architecture Handbook

4.4.3 Quadword Add

Format:

Operation:
Rc ← Rav + Rbv

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
Register Ra is added to register Rb or a literal and the 64-bit sum is written to Rc.

On overflow, the least significant 64 bits of the true result are written to the destination
register.

The unsigned compare instructions can be used to generate carry. After adding two values, if
the sum is less unsigned than either one of the inputs, there was a carry out of the most signifi-
cant bit.

ADDQ Ra.rq,Rb.rq,Rc.wq !Operate format

ADDQ Ra.rq,#b.ib,Rc.wq !Operate format

Integer Overflow

ADDQ Add Quadword

Integer Overflow Enable (/V)
Instruction Descriptions 4–27

4.4.4 Scaled Quadword Add

Format:

Operation:
CASE
 S4ADDQ: Rc ← LEFT_SHIFT(Rav,2) + Rbv
 S8ADDQ: Rc ← LEFT_SHIFT(Rav,3) + Rbv
ENDCASE

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
Register Ra is scaled by 4 (for S4ADDQ) or 8 (for S8ADDQ) and is added to register Rb or a
literal, and the 64-bit sum is written to Rc.

On overflow, the least significant 64 bits of the true result are written to the destination
register.

SxADDQ Ra.rq,Rb.rq,Rc.wq !Operate format

SxADDQ Ra.rq,#b.ib,Rc.wq !Operate format

None

S4ADDQ Scaled Add Quadword by 4
S8ADDQ Scaled Add Quadword by 8

None
 4–28 Alpha Architecture Handbook

4.4.5 Integer Signed Compare

Format:

Operation:
IF Rav SIGNED_RELATION Rbv THEN
 Rc ← 1
ELSE
 Rc ← 0

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
Register Ra is compared to Register Rb or a literal. If the specified relationship is true, the
value one is written to register Rc; otherwise, zero is written to Rc.

Notes:

• Compare Less Than A,B is the same as Compare Greater Than B,A; Compare Less
Than or Equal A,B is the same as Compare Greater Than or Equal B,A. Therefore, only
the less-than operations are included.

CMPxx Ra.rq,Rb.rq,Rc.wq !Operate format

CMPxx Ra.rq,#b.ib,Rc.wq !Operate format

None

CMPEQ Compare Signed Quadword Equal
CMPLE Compare Signed Quadword Less Than or Equal

CMPLT Compare Signed Quadword Less Than

None
Instruction Descriptions 4–29

4.4.6 Integer Unsigned Compare

Format:

Operation:
IF Rav UNSIGNED_RELATION Rbv THEN
 Rc ← 1
ELSE
 Rc ← 0

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
Register Ra is compared to Register Rb or a literal. If the specified relationship is true, the
value one is written to register Rc; otherwise, zero is written to Rc.

CMPUxx Ra.rq,Rb.rq,Rc.wq !Operate format

CMPUxx Ra.rq,#b.ib,Rc.wq !Operate format

None

CMPULE Compare Unsigned Quadword Less Than or Equal
CMPULT Compare Unsigned Quadword Less Than

None
 4–30 Alpha Architecture Handbook

4.4.7 Count Leading Zero

Format:

Operation:
temp = 0
FOR i FROM 63 DOWN TO 0
 IF { Rbv<i> EQ 1 } THEN BREAK
 temp = temp + 1
END
 Rc<6:0> ← temp<6:0>
 Rc<63:7> ← 0

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
The number of leading zeros in Rb, starting at the most significant bit position, is written to Rc.
Ra must be R31.

CTLZ Rb.rq,Rc.wq ! Operate format

None

CTLZ Count Leading Zero

None
Instruction Descriptions 4–31

4.4.8 Count Population

Format:

Operation:
temp = 0
FOR i FROM 0 TO 63
 IF { Rbv<i> EQ 1 } THEN temp = temp + 1
END
Rc<6:0> ← temp<6:0>
Rc<63:7> ← 0

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
The number of ones in Rb is written to Rc. Ra must be R31.

CTPOP Rb.rq,Rc.wq ! Operate format

None

CTPOP Count Population

None
 4–32 Alpha Architecture Handbook

4.4.9 Count Trailing Zero

Format:

Operation:
temp = 0
FOR i FROM 0 TO 63
 IF { Rbv<i> EQ 1 } THEN BREAK
 temp = temp + 1
END
Rc<6:0> ← temp<6:0>
Rc<63:7> ← 0

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
The number of trailing zeros in Rb, starting at the least significant bit position, is written to Rc.
Ra must be R31.

CTTZ Rb.rq,Rc.wq ! Operate format

None

CTTZ Count Trailing Zero

None
Instruction Descriptions 4–33

4.4.10 Longword Multiply

Format:

Operation:
 Rc ← SEXT ((Rav * Rbv)<31:0>)

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

Register Ra is multiplied by register Rb or a literal and the sign-extended 32-bit product is
written to Rc.

The high 32 bits of Ra and Rb are ignored. Rc is a proper sign extension of the truncated 32-bit
product. Overflow detection is based on the longword product Rav<31:0> * Rbv<31:0>. On
overflow, the proper sign extension of the least significant 32 bits of the true result is written to
the destination register.

The MULQ instruction can be used to return the full 64-bit product.

MULL Ra.rl,Rb.rl,Rc.wq !Operate format

MULL Ra.rl,#b.ib,Rc.wq !Operate format

Integer Overflow

MULL Multiply Longword

Integer Overflow Enable (/V)
 4–34 Alpha Architecture Handbook

4.4.11 Quadword Multiply

Format:

Operation:
Rc ← Rav * Rbv

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

Register Ra is multiplied by register Rb or a literal and the 64-bit product is written to register
Rc. Overflow detection is based on considering the operands and the result as signed quanti-
ties. On overflow, the least significant 64 bits of the true result are written to the destination
register.

The UMULH instruction can be used to generate the upper 64 bits of the 128-bit result when
an overflow occurs.

MULQ Ra.rq,Rb.rq,Rc.wq !Operate format

MULQ Ra.Rq,#b.ib,Rc.wq !Operate format

Integer Overflow

MULQ Multiply Quadword

Integer Overflow Enable (/V)
Instruction Descriptions 4–35

4.4.12 Unsigned Quadword Multiply High

Format:

Operation:
Rc ← {Rav * U Rbv}<127:64>

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

Register Ra and Rb or a literal are multiplied as unsigned numbers to produce a 128-bit result.
The high-order 64-bits are written to register Rc.

The UMULH instruction can be used to generate the upper 64 bits of a 128-bit result as
follows:

Ra and Rb are unsigned: result of UMULH
Ra and Rb are signed: (result of UMULH) – Ra<63>*Rb – Rb<63>*Ra

The MULQ instruction gives the low 64 bits of the result in either case.

UMULH Ra.rq,Rb.rq,Rc.wq !Operate format

UMULH Ra.rq,#b.ib,Rc.wq !Operate format

None

UMULH Unsigned Multiply Quadword High

None
 4–36 Alpha Architecture Handbook

>.
4.4.13 Longword Subtract

Format:

Operation:
Rc ← SEXT ((Rav - Rbv)<31:0>)

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

Register Rb or a literal is subtracted from register Ra and the sign-extended 32-bit difference is
written to Rc.

The high 32 bits of Ra and Rb are ignored. Rc is a proper sign extension of the truncated 32-bit
difference. Overflow detection is based on the longword difference Rav<31:0> – Rbv<31:0

SUBL Ra.rl,Rb.rl,Rc.wq !Operate format

SUBL Ra.rl,#b.ib,Rc.wq !Operate format

Integer Overflow

SUBL Subtract Longword

Integer Overflow Enable (/V)
Instruction Descriptions 4–37

4.4.14 Scaled Longword Subtract

Format:

Operation:
CASE
 S4SUBL: Rc ← SEXT (((LEFT_SHIFT(Rav,2)) - Rbv)<31:0>)
 S8SUBL: Rc ← SEXT (((LEFT_SHIFT(Rav,3)) - Rbv)<31:0>)
ENDCASE

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
Register Rb or a literal is subtracted from the scaled value of register Ra, which is scaled by 4
(for S4SUBL) or 8 (for S8SUBL), and the sign-extended 32-bit difference is written to Rc.

The high 32 bits of Ra and Rb are ignored. Rc is a proper sign extension of the truncated 32-bit
difference.

SxSUBL Ra.rl,Rb.rl,Rc.wq !Operate format

SxSUBL Ra.rl,#b.ib,Rc.wq !Operate format

None

S4SUBL Scaled Subtract Longword by 4

S8SUBL Scaled Subtract Longword by 8

None
 4–38 Alpha Architecture Handbook

4.4.15 Quadword Subtract

Format:

Operation:
Rc ← Rav - Rbv

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

Register Rb or a literal is subtracted from register Ra and the 64-bit difference is written to reg-
ister Rc. On overflow, the least significant 64 bits of the true result are written to the
destination register.

The unsigned compare instructions can be used to generate borrow. If the minuend (Rav) is
less unsigned than the subtrahend (Rbv), a borrow will occur.

SUBQ Ra.rq,Rb.rq,Rc.wq !Operate format

SUBQ Ra.rq,#b.ib,Rc.wq !Operate format

Integer Overflow

SUBQ Subtract Quadword

Integer Overflow Enable (/V)
Instruction Descriptions 4–39

4.4.16 Scaled Quadword Subtract

Format:

Operation:
CASE
 S4SUBQ: Rc ← LEFT_SHIFT(Rav,2) - Rbv
 S8SUBQ: Rc ← LEFT_SHIFT(Rav,3) - Rbv
ENDCASE

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
Register Rb or a literal is subtracted from the scaled value of register Ra, which is scaled by 4
(for S4SUBQ) or 8 (for S8SUBQ), and the 64-bit difference is written to Rc.

SxSUBQ Ra.rq,Rb.rq,Rc.wq !Operate format

SxSUBQ Ra.rq,#b.ib,Rc.wq !Operate format

None

S4SUBQ Scaled Subtract Quadword by 4

S8SUBQ Scaled Subtract Quadword by 8

None
 4–40 Alpha Architecture Handbook

d, a
ns,

a left
4.5 Logical and Shift Instructions

The logical instructions perform quadword Boolean operations. The conditional move integer
instructions perform conditionals without a branch. The shift instructions perform left and right
logical shift and right arithmetic shift. These are summarized in Table 4–6.

Software Note:
There is no arithmetic left shift instruction. Where an arithmetic left shift would be use
logical shift will do. For multiplying by a small power of two in address computatio
logical left shift is acceptable.

Integer multiply should be used to perform an arithmetic left shift with overflow checking.

Bit field extracts can be done with two logical shifts. Sign extension can be done with
logical shift and a right arithmetic shift.

Table 4–6: Logical and Shift Instructions Summary

Mnemonic Operation

AND Logical Product

BIC Logical Product with Complement

BIS Logical Sum (OR)

EQV Logical Equivalence (XORNOT)

ORNOT Logical Sum with Complement

XOR Logical Difference

CMOVxx Conditional Move Integer

SLL Shift Left Logical

SRA Shift Right Arithmetic

SRL Shift Right Logical
Instruction Descriptions 4–41

4.5.1 Logical Functions

Format:

Operation:
Rc ← Rav AND Rbv !AND
Rc ← Rav OR Rbv !BIS
Rc ← Rav XOR Rbv !XOR
Rc ← Rav AND {NOT Rbv} !BIC
Rc ← Rav OR {NOT Rbv} !ORNOT
Rc ← Rav XOR {NOT Rbv} !EQV

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
These instructions perform the designated Boolean function between register Ra and register
Rb or a literal. The result is written to register Rc.

The NOT function can be performed by doing an ORNOT with zero (Ra = R31).

mnemonic Ra.rq,Rb.rq,Rc.wq !Operate format

mnemonic Ra.rq,#b.ib,Rc.wq !Operate format

None

AND Logical Product
BIC Logical Product with Complement

BIS Logical Sum (OR)
EQV Logical Equivalence (XORNOT)

ORNOT Logical Sum with Complement
XOR Logical Difference

None
 4–42 Alpha Architecture Handbook

4.5.2 Conditional Move Integer

Format:

Operation:
IF TEST(Rav, Condition_based_on_Opcode) THEN

 Rc ← Rbv

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
Register Ra is tested. If the specified relationship is true, the value Rbv is written to register
Rc.

CMOVxx Ra.rq,Rb.rq,Rc.wq !Operate format

CMOVxx Ra.rq,#b.ib,Rc.wq !Operate format

None

CMOVEQ CMOVE if Register Equal to Zero
CMOVGE CMOVE if Register Greater Than or Equal to Zero

CMOVGT CMOVE if Register Greater Than Zero
CMOVLBC CMOVE if Register Low Bit Clear

CMOVLBS CMOVE if Register Low Bit Set
CMOVLE CMOVE if Register Less Than or Equal to Zero

CMOVLT CMOVE if Register Less Than Zero
CMOVNE CMOVE if Register Not Equal to Zero

None
Instruction Descriptions 4–43

Notes:

Except that it is likely in many implementations to be substantially faster, the instruction:

CMOVEQ Ra,Rb,Rc

is exactly equivalent to:

BNE Ra,label
OR Rb,Rb,Rc

label: ...

For example, a branchless sequence for:

R1=MAX(R1,R2)

is:

CMPLT R1,R2,R3 ! R3=1 if R1<R2
CMOVNE R3,R2,R1 ! Move R2 to R1 if R1<R2
 4–44 Alpha Architecture Handbook

4.5.3 Shift Logical

Format:

Operation:
Rc ← LEFT_SHIFT(Rav, Rbv<5:0>) !SLL
Rc ← RIGHT_SHIFT(Rav, Rbv<5:0>) !SRL

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
Register Ra is shifted logically left or right 0 to 63 bits by the count in register Rb or a literal.
The result is written to register Rc. Zero bits are propagated into the vacated bit positions.

SxL Ra.rq,Rb.rq,Rc.wq !Operate format

SxL Ra.rq,#b.ib,Rc.wq !Operate format

None

SLL Shift Left Logical
SRL Shift Right Logical

None
Instruction Descriptions 4–45

4.5.4 Shift Arithmetic

Format:

Operation:
Rc ← ARITH_RIGHT_SHIFT(Rav, Rbv<5:0>)

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

Register Ra is right shifted arithmetically 0 to 63 bits by the count in register Rb or a literal.
The result is written to register Rc. The sign bit (Rav<63>) is propagated into the vacated bit
positions.

SRA Ra.rq,Rb.rq,Rc.wq !Operate format

SRA Ra.rq,#b.ib,Rc.wq !Operate format

None

SRA Shift Right Arithmetic

None
 4–46 Alpha Architecture Handbook

g on
4.6 Byte Manipulation Instructions

Alpha implementations that support the BWX extension provide the following instructions for
loading, sign-extending, and storing bytes and words between a register and memory:

The AMASK instruction reports whether a particular Alpha implementation supports the BWX
extension. AMASK is described in Sections 4.11.1 and D.3.

LDBU and STB are the recommended way to perform byte load and store operations on Alpha
implementations that support them; use them rather than the extract, insert, and mask byte
instructions described in this section. In particular, the implementation examples in this sec-
tion that illustrate byte operations are not appropriate for Alpha implementations that support
the BWX extension – instead use the recommendations in Section A.4.1.

In addition to LDBU and STB, Alpha provides the instructions in Table 4–7 for operatin
byte operands within registers.

Instruction Meaning Described in Section

LDBU/LDWU Load byte/word unaligned 4.2.2

SEXTB/SEXTW Sign-extend byte/word 4.6.5

STB/STW Store byte/word 4.2.6

Table 4–7: Byte-Within-Register Manipulation Instructions Summary

Mnemonic Operation

CMPBGE Compare Byte

EXTBL Extract Byte Low

EXTWL Extract Word Low

EXTLL Extract Longword Low

EXTQL Extract Quadword Low

EXTWH Extract Word High

EXTLH Extract Longword High

EXTQH Extract Quadword High

INSBL Insert Byte Low

INSWL Insert Word Low

INSLL Insert Longword Low

INSQL Insert Quadword Low
Instruction Descriptions 4–47

INSWH Insert Word High

INSLH Insert Longword High

INSQH Insert Quadword High

MSKBL Mask Byte Low

MSKWL Mask Word Low

MSKLL Mask Longword Low

MSKQL Mask Quadword Low

MSKWH Mask Word High

MSKLH Mask Longword High

MSKQH Mask Quadword High

SEXTB Sign extend byte

SEXTW Sign extend word

ZAP Zero Bytes

ZAPNOT Zero Bytes Not

Table 4–7: Byte-Within-Register Manipulation Instructions Summary
(Continued)

Mnemonic Operation
 4–48 Alpha Architecture Handbook

4.6.1 Compare Byte

Format:

Operation:
FOR i FROM 0 TO 7
 temp<8:0> ← 0 || Rav<i*8+7:i*8>} + {0 || NOT Rbv<i*8+7:i*8>} + 1
 Rc<i> ← temp<8>
END
Rc<63:8> ← 0

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

CMPBGE does eight parallel unsigned byte comparisons between corresponding bytes of Rav
and Rbv, storing the eight results in the low eight bits of Rc. The high 56 bits of Rc are set to
zero. Bit 0 of Rc corresponds to byte 0, bit 1 of Rc corresponds to byte 1, and so forth. A result
bit is set in Rc if the corresponding byte of Rav is greater than or equal to Rbv (unsigned).

Notes:

The result of CMPBGE can be used as an input to ZAP and ZAPNOT.

To scan for a byte of zeros in a character string:

<initialize R1 to aligned QW address of string>
LOOP:
 LDQ R2, 0(R1) ; Pick up 8 bytes
 LDA R1, 8(R1) ; Increment string pointer
 CMPBGE R31, R2,R3 ; If NO bytes of zero, R3<7:0>=0
 BEQ R3, LOOP ; Loop if no terminator byte found
 ... ; At this point, R3 can be used to

; determine which byte terminated

CMPBGE Ra.rq,Rb.rq,Rc.wq !Operate format

CMPBGE Ra.rq,#b.ib,Rc.wq !Operate format

None

CMPBGE Compare Byte

None
Instruction Descriptions 4–49

To compare two character strings for greater/equal/less:

<initialize R1 to aligned QW address of string1>
<initialize R2 to aligned QW address of string2>
LOOP:
 LDQ R3, 0(R1) ; Pick up 8 bytes of string1
 LDA R1, 8(R1) ; Increment string1 pointer
 LDQ R4, 0(R2) ; Pick up 8 bytes of string2
 LDA R2, 8(R2) ; Increment string2 pointer
 CMPBGE R31, R3, R6 ; Test for zeros in string1
 XOR R3, R4, R5 ; Test for all equal bytes
 BNE R6, DONE ; Exit if a zero found
 BEQ R5, LOOP ; Loop if all equal

DONE: CMPBGE R31, R5, R5 ;
 ...

; At this point, R5 can be used to determine the first not-equal
; byte position (if any), and R6 can be used to determine the
; position of the terminating zero in string1 (if any).

To range-check a string of characters in R1 for ‘0’…‘9’:

 LDQ R2, lit0s ; Pick up 8 bytes of the character
 ; BELOW ‘0’ ‘////////’
 LDQ R3, lit9s ; Pick up 8 bytes of the character
 ; ABOVE ‘9’ ‘::::::::’
 CMPBGE R2, R1, R4 ; Some R4<i>=1 if character is LT ‘0’
 CMPBGE R1, R3, R5 ; Some R5<i>=1 if character is GT ‘9’
 BNE R4, ERROR ; Branch if some char too low
 BNE R5, ERROR ; Branch if some char too high
 4–50 Alpha Architecture Handbook

4.6.2 Extract Byte

Format:

Operation:
CASE
 big_endian_data: Rbv’ ← Rbv XOR 1112
 little_endian_data: Rbv’ ← Rbv
ENDCASE

CASE
 EXTBL: byte_mask ← 0000 00012
 EXTWx: byte_mask ← 0000 00112
 EXTLx: byte_mask ← 0000 11112
 EXTQx: byte_mask ← 1111 11112
ENDCASE

CASE
 EXTxL:
 byte_loc ← Rbv’<2:0>*8
 temp ← RIGHT_SHIFT(Rav, byte_loc<5:0>)
 Rc ← BYTE_ZAP(temp, NOT(byte_mask))
 EXTxH:
 byte_loc ← 64 - Rbv’<2:0>*8
 temp ← LEFT_SHIFT(Rav, byte_loc<5:0>)
 Rc ← BYTE_ZAP(temp, NOT(byte_mask))
ENDCASE

Exceptions:

Instruction mnemonics:

Qualifiers:

EXTxx Ra.rq,Rb.rq,Rc.wq !Operate format

EXTxx Ra.rq,#b.ib,Rc.wq !Operate format

None

EXTBL Extract Byte Low
EXTWL Extract Word Low

EXTLL Extract Longword Low
EXTQL Extract Quadword Low

EXTWH Extract Word High
EXTLH Extract Longword High

EXTQH Extract Quadword High

None
Instruction Descriptions 4–51

Description:

EXTxL shifts register Ra right by 0 to 7 bytes, inserts zeros into vacated bit positions, and then
extracts 1, 2, 4, or 8 bytes into register Rc. EXTxH shifts register Ra left by 0 to 7 bytes,
inserts zeros into vacated bit positions, and then extracts 2, 4, or 8 bytes into register Rc. The
number of bytes to shift is specified by Rbv’<2:0>. The number of bytes to extract is speci-
fied in the function code. Remaining bytes are filled with zeros.

Notes:

The comments in the examples below assume that the effective address (ea) of X(R11) is such
that (ea mod 8) = 5), the value of the aligned quadword containing X(R11) is CBAx xxxx, and
the value of the aligned quadword containing X+7(R11) is yyyH GFED, and the datum is
little-endian.

The examples below are the most general case unless otherwise noted; if more information is
known about the value or intended alignment of X, shorter sequences can be used.

The intended sequence for loading a quadword from unaligned address X(R11) is:

 LDQ_U R1, X(R11) ; Ignores va<2:0>, R1 = CBAx xxxx
 LDQ_U R2, X+7(R11) ; Ignores va<2:0>, R2 = yyyH GFED
 LDA R3, X(R11) ; R3<2:0> = (X mod 8) = 5
 EXTQL R1, R3, R1 ; R1 = 0000 0CBA
 EXTQH R2, R3, R2 ; R2 = HGFE D000
 OR R2, R1, R1 ; R1 = HGFE DCBA

The intended sequence for loading and zero-extending a longword from unaligned address X
is:

 LDQ_U R1, X(R11) ; Ignores va<2:0>, R1 = CBAx xxxx
 LDQ_U R2, X+3(R11) ; Ignores va<2:0>, R2 = yyyy yyyD
 LDA R3, X(R11) ; R3<2:0> = (X mod 8) = 5
 EXTLL R1, R3, R1 ; R1 = 0000 0CBA
 EXTLH R2, R3, R2 ; R2 = 0000 D000
 OR R2, R1, R1 ; R1 = 0000 DCBA

The intended sequence for loading and sign-extending a longword from unaligned address X
is:

 LDQ_U R1, X(R11) ; Ignores va<2:0>, R1 = CBAx xxxx
 LDQ_U R2, X+3(R11) ; Ignores va<2:0>, R2 = yyyy yyyD
 LDA R3, X(R11) ; R3<2:0> = (X mod 8) = 5
 EXTLL R1, R3, R1 ; R1 = 0000 0CBA
 EXTLH R2, R3, R2 ; R2 = 0000 D000
 OR R2, R1, R1 ; R1 = 0000 DCBA
 ADDL R31, R1, R1 ; R1 = ssss DCBA
 4–52 Alpha Architecture Handbook

For software that is not designed to use the BWX extension, the intended sequence for loading
and zero-extending a word from unaligned address X is:

 LDQ_U R1, X(R11) ; Ignores va<2:0>, R1 = yBAx xxxx
 LDQ_U R2, X+1(R11) ; Ignores va<2:0>, R2 = yBAx xxxx
 LDA R3, X(R11) ; R3<2:0> = (X mod 8) = 5
 EXTWL R1, R3, R1 ; R1 = 0000 00BA
 EXTWH R2, R3, R2 ; R2 = 0000 0000
 OR R2, R1, R1 ; R1 = 0000 00BA

For software that is not designed to use the BWX extension, the intended sequence for loading
and sign-extending a word from unaligned address X is:

 LDQ_U R1, X(R11) ; Ignores va<2:0>, R1 = yBAx xxxx
 LDQ_U R2, X+1(R11) ; Ignores va<2:0>, R2 = yBAx xxxx
 LDA R3, X+1+1(R11) ; R3<2:0> = 5+1+1 = 7
 EXTQL R1, R3, R1 ; R1 = 0000 000y
 EXTQH R2, R3, R2 ; R2 = BAxx xxx0
 OR R2, R1, R1 ; R1 = BAxx xxxy
 SRA R1, #48, R1 ; R1 = ssss ssBA

For software that is not designed to use the BWX extension, the intended sequence for loading
and zero-extending a byte from address X is:

 LDQ_U R1, X(R11) ; Ignores va<2:0>, R1 = yyAx xxxx
 LDA R3, X(R11) ; R3<2:0> = (X mod 8) = 5
 EXTBL R1, R3, R1 ; R1 = 0000 000A

For software that is not designed to use the BWX extension, the intended sequence for loading
and sign-extending a byte from address X is:

 LDQ_U R1, X(R11) ; Ignores va<2:0>, R1 = yyAx xxxx
 LDA R3, X+1(R11) ; R3<2:0> = (X + 1) mod 8, i.e.,
 ; convert byte position within
 ; quadword to one-origin based
 EXTQH R1, R3, R1 ; Places the desired byte into byte 7
 ; of R1.final by left shifting
 ; R1.initial by (8 - R3<2:0>) byte
 ; positions
 SRA R1, #56, R1 ; Arithmetic Shift of byte 7 down
 ; into byte 0,

Optimized examples:
Assume that a word fetch is needed from 10(R3), where R3 is intended to contain a long-
word-aligned address. The optimized sequences below take advantage of the known constant
offset, and the longword alignment (hence a single aligned longword contains the entire word).
The sequences generate a Data Alignment Fault if R3 does not contain a longword-aligned
address.
Instruction Descriptions 4–53

For software that is not designed to use the BWX extension, the intended sequence for loading
and zero-extending an aligned word from 10(R3) is:

 LDL R1, 8(R3) ; R1 = ssss BAxx
 ; Faults if R3 is not longword aligned
 EXTWL R1, #2, R1 ; R1 = 0000 00BA

For software that is not designed to use the BWX extension, the intended sequence for loading
and sign-extending an aligned word from 10(R3) is:

 LDL R1, 8(R3) ; R1 = ssss BAxx
 ; Faults if R3 is not longword aligned
 SRA R1, #16, R1 ; R1 = ssss ssBA

Big-endian examples:
For software that is not designed to use the BWX extension, the intended sequence for loading
and zero-extending a byte from address X is:

 LDQ_U R1, X(R11) ; Ignores va<2:0>, R1 = xxxx xAyy
 LDA R3, X(R11) ; R3<2:0> = 5, shift will be 2 bytes
 EXTBL R1, R3, R1 ; R1 = 0000 000A

The intended sequence for loading a quadword from unaligned address X(R11) is:

 LDQ_U R1, X(R11) ; Ignores va<2:0>, R1 = xxxxxABC
 LDQ_U R2, X+7(R11) ; Ignores va<2:0>, R2 = DEFGHyyy
 LDA R3, X+7(R11) ; R3<2:0> = 4, shift will be 3 bytes
 EXTQH R1, R3, R1 ; R1 = ABC0 0000
 EXTQL R2, R3, R2 ; R2 = 000D EFGH
 OR R1, R2, R1 ; R1 = ABCD EFGH

Note that the address in the LDA instruction for big-endian quadwords is X+7, for longwords
is X+3, and for words is X+1; for little-endian, these are all just X. Also note that the EXTQH
and EXTQL instructions are reversed with respect to the little-endian sequence.
 4–54 Alpha Architecture Handbook

4.6.3 Byte Insert

Format:

Operation:
CASE
 big_endian_data: Rbv’ ← Rbv XOR 1112
 little_endian_data: Rbv’ ← Rbv
ENDCASE

CASE
 INSBL: byte_mask ← 0000 0000 0000 00012
 INSWx: byte_mask ← 0000 0000 0000 00112
 INSLx: byte_mask ← 0000 0000 0000 11112
 INSQx: byte_mask ← 0000 0000 1111 11112
ENDCASE
byte_mask ← LEFT_SHIFT(byte_mask, Rbv’<2:0>)

CASE
 INSxL:
 byte_loc ← Rbv’<2:0>*8
 temp ← LEFT_SHIFT(Rav, byte_loc<5:0>)
 Rc ← BYTE_ZAP(temp, NOT(byte_mask<7:0>))
 INSxH:
 byte_loc ← 64 - Rbv’<2:0>*8
 temp ← RIGHT_SHIFT(Rav, byte_loc<5:0>)
 Rc ← BYTE_ZAP(temp, NOT(byte_mask<15:8>))
ENDCASE

Exceptions:

Instruction mnemonics:

INSxx Ra.rq,Rb.rq,Rc.wq !Operate format

INSxx Ra.rq,#b.ib,Rc.wq !Operate format

None

INSBL Insert Byte Low
INSWL Insert Word Low

INSLL Insert Longword Low
INSQL Insert Quadword Low

INSWH Insert Word High
INSLH Insert Longword High

INSQH Insert Quadword High
Instruction Descriptions 4–55

Qualifiers:

Description:
INSxL and INSxH shift bytes from register Ra and insert them into a field of zeros, storing the
result in register Rc. Register Rbv’<2:0> selects the shift amount, and the function code
selects the maximum field width: 1, 2, 4, or 8 bytes. The instructions can generate a byte,
word, longword, or quadword datum that is spread across two registers at an arbitrary byte
alignment.

None
 4–56 Alpha Architecture Handbook

4.6.4 Byte Mask

Format:

Operation:
CASE
 big_endian_data: Rbv’← Rbv XOR 1112
 little_endian_data: Rbv’← Rbv
ENDCASE

CASE
 MSKBL: byte_mask ← 0000 0000 0000 00012
 MSKWx: byte_mask ← 0000 0000 0000 00112
 MSKLx: byte_mask ← 0000 0000 0000 11112
 MSKQx: byte_mask ← 0000 0000 1111 11112
ENDCASE
byte_mask ← LEFT_SHIFT(byte_mask, Rbv’<2:0>)

CASE
 MSKxL:
 Rc ← BYTE_ZAP(Rav, byte_mask<7:0>)
 MSKxH:
 Rc ← BYTE_ZAP(Rav, byte_mask<15:8>)
ENDCASE

Exceptions:

Instruction mnemonics:

Qualifiers:

MSKxx Ra.rq,Rb.rq,Rc.wq !Operate format

MSKxx Ra.rq,#b.ib,Rc.wq !Operate format

None

MSKBL Mask Byte Low
MSKWL Mask Word Low

MSKLL Mask Longword Low
MSKQL Mask Quadword Low

MSKWH Mask Word High
MSKLH Mask Longword High

MSKQH Mask Quadword High

None
Instruction Descriptions 4–57

Description:

MSKxL and MSKxH set selected bytes of register Ra to zero, storing the result in register Rc.
Register Rbv’<2:0> selects the starting position of the field of zero bytes, and the function
code selects the maximum width: 1, 2, 4, or 8 bytes. The instructions generate a byte, word,
longword, or quadword field of zeros that can spread across two registers at an arbitrary byte
alignment.

Notes:

The comments in the examples below assume that the effective address (ea) of X(R11) is such
that (ea mod 8) = 5, the value of the aligned quadword containing X(R11) is CBAx xxxx, the
value of the aligned quadword containing X+7(R11) is yyyH GFED, the value to be stored
from R5 is HGFE DCBA, and the datum is little-endian. Slight modifications similar to those
in Section 4.6.2 apply to big-endian data.

The examples below are the most general case; if more information is known about the value
or intended alignment of X, shorter sequences can be used.

The intended sequence for storing an unaligned quadword R5 at address X(R11) is:

 LDA R6, X(R11) ; R6<2:0> = (X mod 8) = 5
 LDQ_U R2, X+7(R11) ; Ignores va<2:0>, R2 = yyyH GFED
 LDQ_U R1, X(R11) ; Ignores va<2:0>, R1 = CBAx xxxx
 INSQH R5, R6, R4 ; R4 = 000H GFED
 INSQL R5, R6, R3 ; R3 = CBA0 0000
 MSKQH R2, R6, R2 ; R2 = yyy0 0000
 MSKQL R1, R6, R1 ; R1 = 000x xxxx
 OR R2, R4, R2 ; R2 = yyyH GFED
 OR R1, R3, R1 ; R1 = CBAx xxxx
 STQ_U R2, X+7(R11) ; Must store high then low for
 STQ_U R1, X(R11) ; degenerate case of aligned QW

The intended sequence for storing an unaligned longword R5 at X is:

 LDA R6, X(R11) ; R6<2:0> = (X mod 8) = 5
 LDQ_U R2, X+3(R11) ; Ignores va<2:0>, R2 = yyyy yyyD
 LDQ_U R1, X(R11) ; Ignores va<2:0>, R1 = CBAx xxxx
 INSLH R5, R6, R4 ; R4 = 0000 000D
 INSLL R5, R6, R3 ; R3 = CBA0 0000
 MSKLH R2, R6, R2 ; R2 = yyyy yyy0
 MSKLL R1, R6, R1 ; R1 = 000x xxxx
 OR R2, R4, R2 ; R2 = yyyy yyyD
 OR R1, R3, R1 ; R1 = CBAx xxxx
 STQ_U R2, X+3(R11) ; Must store high then low for
 STQ_U R1, X(R11) ; degenerate case of aligned
 4–58 Alpha Architecture Handbook

For software that is not designed to use the BWX extension, the intended sequence for storing
an unaligned word R5 at X is:

 LDA R6, X(R11) ; R6<2:0> = (X mod 8) = 5
 LDQ_U R2, X+1(R11) ; Ignores va<2:0>, R2 = yBAx xxxx
 LDQ_U R1, X(R11) ; Ignores va<2:0>, R1 = yBAx xxxx
 INSWH R5, R6, R4 ; R4 = 0000 0000
 INSWL R5, R6, R3 ; R3 = 0BA0 0000
 MSKWH R2, R6, R2 ; R2 = yBAx xxxx
 MSKWL R1, R6, R1 ; R1 = y00x xxxx
 OR R2, R4, R2 ; R2 = yBAx xxxx
 OR R1, R3, R1 ; R1 = yBAx xxxx
 STQ_U R2, X+1(R11) ; Must store high then low for
 STQ_U R1, X(R11) ; degenerate case of aligned

For software that is not designed to use the BWX extension, the intended sequence for storing
a byte R5 at X is:

 LDA R6, X(R11) ; R6<2:0> = (X mod 8) = 5
 LDQ_U R1, X(R11) ; Ignores va<2:0>, R1 = yyAx xxxx
 INSBL R5, R6, R3 ; R3 = 00A0 0000
 MSKBL R1, R6, R1 ; R1 = yy0x xxxx
 OR R1, R3, R1 ; R1 = yyAx xxxx
 STQ_U R1, X(R11) ;
Instruction Descriptions 4–59

4.6.5 Sign Extend

Format:

Operation:
CASE
 SEXTB: Rc ← SEXT(Rbv<07:0>)
 SEXTW: Rc ← SEXT(Rbv<15:0>)
ENDCASE

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
The byte or word in register Rb is sign-extended to 64 bits and written to register Rc. Ra must
be R31.

Implementation Note:
The SEXTB and SEXTW instructions are supported in hardware on Alpha
implementations for which the AMASK instruction returns bit 0 set. SEXTB and SEXTW
are supported with software emulation in Alpha implementations for which AMASK does
not return bit 0 set. Software emulation of SEXTB and SEXTW is significantly slower
than hardware support.

SEXTx Rb.rq,Rc.wq !Operate format

SEXTx #b.ib,Rc.wq !Operate format

None

SEXTB Sign Extend Byte
SEXTW Sign Extend Word

None
 4–60 Alpha Architecture Handbook

4.6.6 Zero Bytes

Format:

Operation:
CASE
 ZAP:
 Rc ← BYTE_ZAP(Rav, Rbv<7:0>)

 ZAPNOT:
 Rc ← BYTE_ZAP(Rav, NOT Rbv<7:0>)
ENDCASE

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
ZAP and ZAPNOT set selected bytes of register Ra to zero and store the result in register Rc.
Register Rb<7:0> selects the bytes to be zeroed. Bit 0 of Rbv corresponds to byte 0, bit 1 of
Rbv corresponds to byte 1, and so on. A result byte is set to zero if the corresponding bit of
Rbv is a one for ZAP and a zero for ZAPNOT.

ZAPx Ra.rq,Rb.rq,Rc.wq !Operate format

ZAPx Ra.rq,#b.ib,Rc.wq !Operate format

None

ZAP Zero Bytes
ZAPNOT Zero Bytes Not

None
Instruction Descriptions 4–61

4.7 Floating-Point Instructions

Alpha provides instructions for operating on floating-point operands in each of four data
formats:

• F_floating (VAX single)

• G_floating (VAX double, 11-bit exponent)

• S_floating (IEEE single)

• T_floating (IEEE double, 11-bit exponent)

Data conversion instructions are also provided to convert operands between floating-point and
quadword integer formats, between double and single floating, and between quadword and
longword integers.

Note:

D_floating is a partially supported datatype; no D_floating arithmetic operations are
provided in the architecture. For backward compatibility, exact D_floating arithmetic may
be provided via software emulation. D_floating "format compatibility," in which binary
files of D_floating numbers may be processed but without the last 3 bits of fraction
precision, can be obtained via conversions to G_floating, G arithmetic operations, then
conversion back to D_floating.

The choice of data formats is encoded in each instruction. Each instruction also encodes the
choice of rounding mode and the choice of trapping mode.

All floating-point operate instructions (not including loads or stores) that yield an F_floating or
G_floating zero result must materialize a true zero.

4.7.1 Single-Precision Operations

Single-precision values (F_floating or S_floating) are stored in the floating-point registers in
canonical form, as subsets of double-precision values, with 11-bit exponents restricted to the
corresponding single-precision range, and with the 29 low-order fraction bits restricted to be all
zero.

Single-precision operations applied to canonical single-precision values give single-precision
results. Single-precision operations applied to non-canonical operands give UNPREDICT-
ABLE results.

Longword integer values in floating-point registers are stored in bits <63:62,58:29>, with bits
<61:59> ignored and zeros in bits <28:0>.

4.7.2 Subsets and Faults

All floating-point operations may take floating disabled faults. Any subsetted floating-point
instruction may take an Illegal Instruction Trap. These faults are not explicitly listed in the
description of each instruction.
 4–62 Alpha Architecture Handbook

est
sent-
All floating-point loads and stores may take memory management faults (access control viola-
tion, translation not valid, fault on read/write, data alignment).

The floating-point enable (FEN) internal processor register (IPR) allows system software to
restrict access to the floating-point registers.

If a floating-point instruction is implemented and FEN = 0, attempts to execute the instruction
cause a floating disabled fault.

If a floating-point instruction is not implemented, attempts to execute the instruction cause an
Illegal Instruction Trap. This rule holds regardless of the value of FEN.

An Alpha implementation may provide both VAX and IEEE floating-point operations, either,
or none.

Some floating-point instructions are common to the VAX and IEEE subsets, some are VAX
only, and some are IEEE only. These are designated in the descriptions that follow. If either
subset is implemented, all the common instructions must be implemented.

An implementation that includes IEEE floating-point may subset the ability to perform round-
ing to plus infinity and minus infinity. If not implemented, instructions requesting these
rounding modes take Illegal Instruction Trap.

An implementation that includes IEEE floating-point may implement any subset of the Trap
Disable flags (DNOD, DZED, INED, INVD, OVFD, and UNFD) and Denormal Control flags
(DNZ and UNDZ) in the FPCR:

• If a Trap Disable flag is not implemented, then the corresponding trap occurs as usual.

• If DNZ is not implemented, then any IEEE operation with a denormal input must take
an Invalid Operation Trap.

• If UNDZ is not implemented, then any IEEE operation that includes a /S qualifier that
underflows must take an Underflow Trap.

• If DZED is implemented, then IEEE division of 0/0 must be treated as an invalid opera-
tion instead of a division by zero.

Any unimplemented bits in the FPCR are read as zero and ignored when set.

4.7.3 Definitions

The following definitions apply to Alpha floating-point support.

Alpha finite number
A floating-point number with a definite, in-range value. Specifically, all numbers in the inclu-
sive ranges –MAX through –MIN, zero, and +MIN through +MAX, where MAX is the larg
non-infinite representable floating-point number and MIN is the smallest non-zero repre
able normalized floating-point number.
Instruction Descriptions 4–63

larger
not all
lfway

omes
Ns

, with

c trap

 are
For VAX floating-point, finites do not include reserved operands or dirty zeros (this differs
from the usual VAX interpretation of dirty zeros as finite). For IEEE floating-point, finites do
not include infinites, NaNs, or denormals, but do include minus zero.

denormal
An IEEE floating-point bit pattern that represents a number whose magnitude lies between
zero and the smallest finite number.

dirty zero
A VAX floating-point bit pattern that represents a zero value, but not in true-zero form.

infinity

An IEEE floating-point bit pattern that represents plus or minus infinity.

LSB
The least significant bit. For a positive finite representable number A, A + 1 LSB is the next
larger representative number, and A + ½ LSB is exactly halfway between A and the next
representable number. For a positive representable number A whose fraction field is
zeros, A – 1 LSB is the next smaller representable number, and A – ½ LSB is exactly ha
between A and the next smaller representable number.

non-finite number
An IEEE infinity, NaN, denormal number, or a VAX dirty zero or reserved operand.

Not-a-Number

An IEEE floating-point bit pattern that represents something other than a number. This c
in two forms: signaling NaNs (for Alpha, those with an initial fraction bit of 0) and quiet Na
(for Alpha , those with initial fraction bit of 1).

representable result

A real number that can be represented exactly as a VAX or IEEE floating-point number
finite precision and bounded exponent range.

reserved operand
A VAX floating-point bit pattern that represents an illegal value.

trap shadow
The set of instructions potentially executed after an instruction that signals an arithmeti
but before the trap is actually taken.

true result
The mathematically correct result of an operation, assuming that the input operand values
exact. The true result is typically rounded to the nearest representable result.
 4–64 Alpha Architecture Handbook

true zero

The value +0, represented as exactly 64 zeros in a floating-point register.

4.7.4 Encodings

Floating-point numbers are represented with three fields: sign, exponent, and fraction. The sign
is 1 bit; the exponent is 8, 11, or 15 bits; and the fraction is 23, 52, 55, or 112 bits. Some
encodings represent special values:

The values of MIN and MAX for each of the five floating-point data formats are:

Sign Exponent Fraction
Vax
Meaning

VAX
Finite

IEEE
Meaning

IEEE
Finite

x All-1’s Non-zero Finite Yes +/–NaN No

x All-1’s 0 Finite Yes +/–Infinity No

0 0 Non-zero Dirty zero No +Denormal No

1 0 Non-zero Resv. operand No –Denormal No

0 0 0 True zero Yes +0 Yes

1 0 0 Resv. operand No –0 Yes

x Other x Finite Yes finite Yes

Data
Format

MIN MAX

F_floating 2**–127 * 0.5 2**127 *(1.0 – 2**–24)

(0.293873588e–38) (1.7014117e38)

G_floating 2**–1023 * 0.5 2**1023 * (1.0 – 2**–53)
(0.5562684646268004e–308) (0.89884656743115785407e308)

S_floating 2**–126 * 1.0 2**127 * (2.0 – 2**–23)

(1.17549435e–38) (3.40282347e38)

T_floating 2**–1022 * 1.0 2**1023 * (2.0 – 2**–52)
(2.2250738585072013e–308) (1.7976931348623158e308)

X_floating 2**–16382*1.0 2**16383*(2.0–2**–112)

(See below†)

† (1.18973149535723176508575932662800702e4932)

(See below‡)

‡ (3.36210314311209350626267781732175260e–4932)
Instruction Descriptions 4–65

ding
s

unbi-
ding

 plus

IEEE

, with
etimes

table
sults

sent-
sults

nding

 and is
4.7.5 Rounding Modes

All rounding modes map a true result that is exactly representable to that representable value.

VAX Rounding Modes
For VAX floating-point operations, two rounding modes are provided and are specified in each
instruction: normal (biased) rounding and chopped rounding.

Normal VAX rounding maps the true result to the nearest of two representable results, with
true results exactly halfway between mapped to the larger in absolute value (sometimes called
biased rounding away from zero); maps true results ≥ MAX + 1/2 LSB in magnitude to an
overflow; maps true results < MIN – 1/4 LSB in magnitude to an underflow.

Chopped VAX rounding maps the true result to the smaller in magnitude of two surroun
representable results; maps true results ≥ MAX + 1 LSB in magnitude to an overflow; map
true results < MIN in magnitude to an underflow.

IEEE Rounding Modes

For IEEE floating-point operations, four rounding modes are provided: normal rounding (
ased round to nearest), rounding toward minus infinity, round toward zero, and roun
toward plus infinity. The first three can be specified in the instruction. Rounding toward
infinity can be obtained by setting the Floating-point Control Register (FPCR) to select it and
then specifying dynamic rounding mode in the instruction (See Section 4.7.8). Alpha
arithmetic does rounding before detecting overflow/underflow.

Normal IEEE rounding maps the true result to the nearest of two representable results
true results exactly halfway between mapped to the one whose fraction ends in 0 (som
called unbiased rounding to even); maps true results ≥ MAX + 1/2 LSB in magnitude to an
overflow; maps true results < MIN – 1/2 LSB in magnitude to an underflow.

Plus infinity IEEE rounding maps the true result to the larger of two surrounding represen
results; maps true results > MAX in magnitude to an overflow; maps positive true re
≤ +MIN – 1 LSB to an underflow; and maps negative true results > –MIN to an underflow.

Minus infinity IEEE rounding maps the true result to the smaller of two surrounding repre
able results; maps true results > MAX in magnitude to an overflow; maps positive true re
< +MIN to an underflow; and maps negative true results ≥ –MIN + 1 LSB to an underflow.

Chopped IEEE rounding maps the true result to the smaller in magnitude of two surrou
representable results; maps true results ≥ MAX + 1 LSB in magnitude to an overflow; and
maps non-zero true results < MIN in magnitude to an underflow.

Dynamic rounding mode uses the IEEE rounding mode selected by the FPCR register
described in more detail in Section 4.7.8.
 4–66 Alpha Architecture Handbook

The following tables summarize the floating-point rounding modes:

4.7.6 Computational Models

The Alpha architecture provides a choice of floating-point computational models.

There are two computational models available on systems that implement the VAX float-
ing-point subset:

• VAX-format arithmetic with precise exceptions

• High-performance VAX-format arithmetic

There are three computational models available on systems that implement the IEEE float-
ing-point subset:

• IEEE compliant arithmetic

• IEEE compliant arithmetic without inexact exception

• High-performance IEEE-format arithmetic

4.7.6.1 VAX-Format Arithmetic with Precise Exceptions

This model provides floating-point arithmetic that is fully compatible with the floating-point
arithmetic provided by the VAX architecture. It provides support for VAX non-finites and
gives precise exceptions.

This model is implemented by using VAX floating-point instructions with the /S, /SU, and /SV
trap qualifiers. Each instruction can determine whether it also takes an exception on underflow
or integer overflow. The performance of this model depends on how often computations
involve non-finite operands. Performance also depends on how an Alpha system chooses to
trade off implementation complexity between hardware and operating system completion han-
dlers (see Section 4.7.7.3).

VAX Rounding Mode Instruction Notation

Normal rounding (No qualifier)

Chopped /C

IEEE Rounding Mode Instruction Notation

Normal rounding (No qualifier)

Dynamic rounding /D

Plus infinity /D and ensure that FPCR<DYN> = ‘11’

Minus infinity /M

Chopped /C
Instruction Descriptions 4–67

4.7.6.2 High-Performance VAX-Format Arithmetic

This model provides arithmetic operations on VAX finite numbers. An imprecise arithmetic
trap is generated by any operation that involves non-finite numbers, floating overflow, and
divide-by-zero exceptions.

This model is implemented by using VAX floating-point instructions with a trap qualifier other
than /S, /SU, or /SV. Each instruction can determine whether it also traps on underflow or inte-
ger overflow. This model does not require the overhead of an operating system completion
handler and can be the faster of the two VAX models.

4.7.6.3 IEEE-Compliant Arithmetic

This model provides floating-point arithmetic that fully complies with the IEEE Standard for
Binary Floating-Point Arithmetic. It provides all of the exception status flags that are in the
standard. It provides a default where all traps and faults are disabled and where IEEE
non-finite values are used in lieu of exceptions.

Alpha operating systems provide additional mechanisms that allow the user to specify dynami-
cally which exception conditions should trap and which should proceed without trapping. The
operating systems also include mechanisms that allow alternative handling of denormal val-
ues. See Appendix B and the appropriate operating system documentation for a description of
these mechanisms.

This model is implemented by using IEEE floating-point instructions with the /SUI
or /SVI trap qualifiers. The performance of this model depends on how often computations
involve inexact results and non-finite operands and results. Performance also depends on how
the Alpha system chooses to trade off implementation complexity between hardware and oper-
ating system completion handlers (see Section 4.7.7.3). This model provides acceptable
performance on Alpha systems that implement the inexact disable (INED) bit in the FPCR.
Performance may be slow if the INED bit is not implemented.

4.7.6.4 IEEE-Compliant Arithmetic Without Inexact Exception

This model is similar to the model in Section 4.7.6.3, except this model does not signal inexact
results either by the inexact status flag or by trapping. Combining routines that are compiled
with this model and routines that are compiled with the model in Section 4.7.6.3 can give an
application better control over testing when an inexact operation will affect computational
accuracy.

This model is implemented by using IEEE floating-point instructions with the /SU or /SV trap
qualifiers. The performance of this model depends on how often computations involve
non-finite operands and results. Performance also depends on how an Alpha system chooses to
trade off implementation complexity between hardware and operating system completion han-
dlers (see Section 4.7.7.3).
 4–68 Alpha Architecture Handbook

4.7.6.5 High-Performance IEEE-Format Arithmetic

This model provides arithmetic operations on IEEE finite numbers and notifies applications of
all exceptional floating-point operations. An imprecise arithmetic trap is generated by any
operation that involves non-finite numbers, floating overflow, divide-by-zero, and invalid
operations. Underflow results are set to zero. Conversion to integer results that overflow are set
to the low-order bits of the integer value.

This model is implemented by using IEEE floating-point instructions with a trap qualifier other
than /SU, /SV, /SUI, or /SVI. Each instruction can determine whether it also traps on under-
flow or integer overflow. This model does not require the overhead of an operating system
completion handler and can be the fastest of the three IEEE models.

4.7.7 Trapping Modes

There are six exceptions that can be generated by floating-point operate instructions, all sig-
naled by an arithmetic exception trap. These exceptions are:

• Invalid operation

• Division by zero

• Overflow

• Underflow

• Inexact result

• Integer overflow (conversion to integer only)

4.7.7.1 VAX Trapping Modes

This section describes the characteristics of the four VAX trapping modes, which are summa-
rized in Table 4–8.

When no trap mode is specified (the default):

• Arithmetic is performed on VAX finite numbers.
• Operations give imprecise traps whenever the following occur:

– an operand is a non-finite number
– a floating overflow
– a divide-by-zero

• Traps are imprecise and it is not always possible to determine which instruction trig-
gered a trap or the operands of that instruction.

• An underflow produces a zero result without trapping.
• A conversion to integer that overflows uses the low-order bits of the integer as the

result without trapping.
• The result of any operation that traps is UNPREDICTABLE.
Instruction Descriptions 4–69

When /U or /V mode is specified:

• Arithmetic is performed on VAX finite numbers.
• Operations give imprecise traps whenever the following occur:

– an operand is a non-finite number
– an underflow
– an integer overflow
– a floating overflow
– a divide-by-zero

• Traps are imprecise and it is not always possible to determine which instruction trig-
gered a trap or the operands of that instruction.

• An underflow trap produces a zero result.
• A conversion to integer trapping with an integer overflow produces the low-order bits

of the integer value.
• The result of any other operation that traps is UNPREDICTABLE.

When /S mode is specified:

• Arithmetic is performed on all VAX values, both finite and non-finite.
• A VAX dirty zero is treated as zero.
• Exceptions are signaled for:

– a VAX reserved operand, which generates an invalid operation exception
– a floating overflow
– a divide-by-zero

• Exceptions are precise and an application can locate the instruction that caused the
exception, along with its operand values. See Section 4.7.7.3.

• An operation that underflows produces a zero result without taking an exception.
• A conversion to integer that overflows uses the low-order bits of the integer as the

result, without taking an exception.
• When an operation takes an exception, the result of the operation is UNPREDICT-

ABLE.

When /SU or /SV mode is specified:

• Arithmetic is performed on all VAX values, both finite and non-finite.
• A VAX dirty zero is treated as zero.
• Exceptions are signaled for:

– a VAX reserved operand, which generates an invalid operation exception
– an underflow
– an integer overflow
– a floating overflow
– a divide-by-zero

• Exceptions are precise and an application can locate the instruction that caused the
exception, along with its operand values. See Section 4.7.7.3.

• An underflow exception produces a zero.
• A conversion to integer exception with integer overflow produces the low-order bits of

the integer value.
• The result of any other operation that takes an exception is UNPREDICTABLE.
 4–70 Alpha Architecture Handbook

mma-
A summary of the VAX trapping modes, instruction notation, and their meaning follows in
Table 4–8:

4.7.7.2 IEEE Trapping Modes

This section describes the characteristics of the four IEEE trapping modes, which are su
rized in Table 4–9.

When no trap mode is specified (the default):

• Arithmetic is performed on IEEE finite numbers.
• Operations give imprecise traps whenever the following occur:

– an operand is a non-finite number
– a floating overflow
– a divide-by-zero
– an invalid operation

• Traps are imprecise, and it is not always possible to determine which instruction trig-
gered a trap or the operands of that instruction.

• An underflow produces a zero result without trapping.
• A conversion to integer that overflows uses the low-order bits of the integer as the

result without trapping.
• When an operation traps, the result of the operation is UNPREDICTABLE.

When /U or /V mode is specified :

• Arithmetic is performed on IEEE finite numbers.
• Operations give imprecise traps whenever the following occur:

– an operand is a non-finite number
– an underflow
– an integer overflow
– a floating overflow
– a divide-by-zero
– an invalid operation

Table 4–8: VAX Trapping Modes Summary

Trap Mode Notation Meaning

Underflow disabled No qualifier
/S

Imprecise
Precise exception completion

Underflow enabled /U
/SU

Imprecise
Precise exception completion

Integer overflow disabled No qualifier
/S

Imprecise
Precise exception completion

Integer overflow enabled /V
/SV

Imprecise
Precise exception completion
Instruction Descriptions 4–71

 com-

-
of
 float-

• Traps are imprecise, and it is not always possible to determine which instruction trig-
gered a trap or the operands of that instruction.

• An underflow trap produces a zero.
• A conversion to integer trap with an integer overflow produces the low-order bits of the

integer.
• The result of any other operation that traps is UNPREDICTABLE.

When /SU or /SV mode is specified:

• Arithmetic is performed on all IEEE values, both finite and non-finite.
• Alpha systems support all IEEE features except inexact exception (which requires /SUI

or /SVI):
– The IEEE standard specifies a default where exceptions do not fault or trap.In

bination with the FPCR, this mode allows disabling exceptions and producing
IEEE compliant nontrapping results. See Sections 4.7.7.10 and 4.7.7.11.

– Each Alpha operating system provides a way to optionally signal IEEE floating
point exceptions. This mode enables the IEEE status flags that keep a record
each exception that is encountered. An Alpha operating system uses the IEEE
ing-point control (FP_C) quadword, described in Section B.2.1, to maintain the
IEEE status flags and to enable calls to IEEE user signal handlers.

• Exceptions signaled in this mode are precise and an application can locate the instruc-
tion that caused the exception, along with its operand values. See Section 4.7.7.3.

When /SUI or /SVI mode is specified:

• Arithmetic is performed on all IEEE values, both finite and non-finite.
• Inexact exceptions are supported, along with all the other IEEE features supported by

the /SU or /SV mode.

A summary of the IEEE trapping modes, instruction notation, and their meaning follows in
Table 4–9:

Table 4–9: Summary of IEEE Trapping Modes

Trap Mode Notation Meaning

Underflow disabled and
inexact disabled

No qualifier Imprecise

Underflow enabled and
inexact disabled

/U
/SU

Imprecise
Precise exception completion

Underflow enabled and
inexact enabled

/SUI Precise exception completion

Integer overflow disabled and
inexact disabled

No qualifier Imprecise
 4–72 Alpha Architecture Handbook

4.7.7.3 Arithmetic Trap Completion

Because floating-point instructions may be pipelined, the trap PC can be an arbitrary number
of instructions past the one triggering the trap. Those instructions that are executed after the
trigger instruction of an arithmetic trap are collectively referred to as the trap shadow of the
trigger instruction.

Marking floating-point instructions for exception completion with any valid qualifier combina-
tion that includes the /S qualifier enables the completion of the triggering instruction. For any
instruction so marked, the output register for the triggering instruction cannot also be one of
the input registers, so that an input register cannot be overwritten and the input value is avail-
able after a trap occurs.

See Section B.2 for more information.

The AMASK instruction reports how the arithmetic trap should be completed:

• If AMASK returns with bit 9 clear, floating-point traps are imprecise. Exception com-
pletion requires that generated code must obey the trap shadow rules in Section
4.7.7.3.1, with a trap shadow length as described in Section 4.7.7.3.2.

• If AMASK returns with bit 9 set, the hardware implements precise floating-point traps.
If the instruction has any valid qualifier combination that includes /S, the trap PC points
to the instruction that immediately follows the instruction that triggered the trap. The
trap shadow contains zero instructions; exception completion does not require that the
generated code follow the conditions in Section 4.7.7.3.1 and the length rules in Section
4.7.7.3.2.

4.7.7.3.1 Trap Shadow Rules

For an operating system (OS) completion handler to complete non-finite operands and excep-
tions, the following conditions must hold.

Conditions 1 and 2, below, allow an OS completion handler to locate the trigger instruction by
doing a linear scan backwards from the trap PC while comparing destination registers in the
trap shadow with the registers that are specified in the register write mask parameter to the
arithmetic trap.

Integer overflow enabled and
inexact disabled

/V
/SV

Imprecise
Precise exception completion

Integer overflow enabled and
inexact enabled

/SVI Precise exception completion

Table 4–9: Summary of IEEE Trapping Modes (Continued)

Trap Mode Notation Meaning
Instruction Descriptions 4–73

ns in

ger
fier,

lifier.
stina-
ation

 with
n to
t exe-
Condition 3 allows an OS completion handler to emulate the trigger instruction with its origi-
nal input operand values.

Condition 4 allows the handler to re-execute instructions in the trap shadow with their original
operand values.

Condition 5 prevents any unusual side effects that would cause problems on repeated execu-
tion of the instructions in the trap shadow.

Conditions:

1. The destination register of the trigger instruction may not be used as the destination reg-
ister of any instruction in the trap shadow.

2. The trap shadow may not include any branch or jump instructions.

3. An instruction in the trap shadow may not modify an input to the trigger instruction.

4. The value in a register or memory location that is used as input to some instruction in
the trap shadow may not be modified by a subsequent instruction in the trap shadow
unless that value is produced by an earlier instruction in the trap shadow.

5. The trap shadow may not contain any instructions with side effects that interact with
earlier instructions in the trap shadow or with other parts of the system. Examples of
operations with prohibited side effects are:

– Modifications of the stack pointer or frame pointer that can change the accessibility
of stack variables and the exception context that is used by earlier instructio
the trap shadow.

– Modifications of volatile values and access to I/O device registers.

– If order of exception reporting is important, taking an arithmetic trap by an inte
instruction or by a floating-point instruction that does not include a /S quali
either of which can report exceptions out of order.

An instruction may be in the trap shadows of multiple instructions that include a /S qua
That instruction must obey all conditions for all those trap shadows. For example, the de
tion register of an instruction in multiple trap shadows must be different than the destin
registers of each possible trigger instruction.

4.7.7.3.2 Trap Shadow Length Rules

The trap shadow length rules in Table 4–10 apply only to those floating-point instructions
any valid qualifier combination that includes a /S trap qualifier. Further, the instructio
which the trap shadow extends is not part of the trap shadow and that instruction is no
cuted prior to the arithmetic trap that is signaled by the trigger instruction.

Implementation notes:

• On Alpha implementations for which the IMPLVER instruction returns the value 0, the
trap shadow of an instruction may extend after the result is consumed by a float-
ing-point STx instruction. On all other implementations, the trap shadow ends when a
result is consumed.

• Because Alpha implementations need not execute instructions that have R31 or F31 as
the destination operand, instructions with such an destination should not be thought to
end a trap shadow.
 4–74 Alpha Architecture Handbook

Table 4–10: Trap Shadow Length Rules

Floating-Point
Instruction Group

Trap Shadow Extends Until Any of the Following
Occurs:

Floating-point operate
(except DIVx and SQRTx)

• Encountering a CALL_PAL, EXCB, or TRAPB
instruction.

• The result is consumed by any instruction except
floating-point STx.

• The fourth instruction† after the result is consumed by
a floating-point STx instruction.

Or, following the floating-point STx of the result, the
result of a LDx that loads the stored value is
consumed by any instruction.

• The result of a subsequent floating-point operate
instruction is consumed by any instruction except
floating-point STx.

• The second instruction† after the result of a subse-
quent floating-point operate instruction is consumed
by a floating-point STx instruction.

• The result of a subsequent floating-point DIVx or
SQRTx instruction is consumed by any instruction.

Floating-point DIVx
• Encountering a CALL_PAL, EXCB, or TRAPB

instruction.

• The result is consumed by any instruction except
floating-point STx.

• The fourth instruction† after the result is consumed by
a floating-point STx instruction.

Or, following the floating-point STx of the result, the
result of a LDx that loads the stored value is
consumed by any instruction.

• The result of a subsequent floating-point DIVx is con-
sumed by any instruction.
Instruction Descriptions 4–75

4.7.7.4 Invalid Operation (INV) Arithmetic Trap

An invalid operation arithmetic trap is signaled if an operand is a non-finite number or if an
operand is invalid for the operation to be performed. (Note that CMPTxy does not trap on plus
or minus infinity.) Invalid operations are:

• Any operation on a signaling NaN.

• Addition of unlike-signed infinities or subtraction of like-signed infinities, such as
(+infinity + –infinity) or (+infinity – +infinity).

• Multiplication of 0∗infinity.

• IEEE division of 0/0 or infinity/infinity.

• Conversion of an infinity or NaN to an integer.

• CMPTLE or CMPTLT when either operand is a NaN.

• SQRTx of a negative non-zero number.

The instruction cannot disable the trap and, if the trap occurs, an UNPREDICTABLE value is
stored in the result register. However, under some conditions, the FPCR can dynamically dis-
able the trap, as described in Section 4.7.7.10, producing a correct IEEE result, as described in
Section 4.7.10.

IEEE-compliant system software must also supply an invalid operation indication to the user
for x REM 0 and for conversions to integer that take an integer overflow trap.

If an implementation does not support the DZED (division by zero disable) bit, it may respond
to the IEEE division of 0/0 by delivering a division by zero trap to the operating system, which
IEEE compliant software must change to an invalid operation trap for the user.

Floating-point SQRTx
• Encountering a CALL_PAL, EXCB, or TRAPB

instruction.

• The result is consumed by any instruction.

• The result of a subsequent SQRTx instruction is con-
sumed by any instruction.

† The length of four instructions is a conservative estimate of how far the trap shadow may
extend past a consuming floating-point STx instruction. The length of two instructions is a
conservative estimate of how far the trap shadow may extend after a subsequent float-
ing-point operate instruction is consumed by a floating-point STx instruction. Compilers can
make a more precise estimate by consulting the DECchip 21064 and DECchip 21064A
Alpha AXP Microprocessors Hardware Reference Manual, EC-QD2RA-TE.

Table 4–10: Trap Shadow Length Rules (Continued)

Floating-Point
Instruction Group

Trap Shadow Extends Until Any of the Following
Occurs:
 4–76 Alpha Architecture Handbook

An implementation may choose not to take an INV trap for a valid IEEE operation that
involves denormal operands if:

• The instruction is modified by any valid qualifier combination that includes the /S
(exception completion) qualifier.

• The implementation supports the DNZ (denormal operands to zero) bit and DNZ is set.

• The instruction produces the result and exceptions required by Section 4.7.10, as modi-
fied by the DNZ bit described in Section 4.7.7.11.

An implementation may choose not to take an INV trap for a valid IEEE operation that
involves denormal operands, and direct hardware implementation of denormal arithmetic is
permitted if:

• The instruction is modified by any valid qualifier combination that includes the /S
(exception completion) qualifier.

• The implementation supports both the DNOD (denormal operand exception disable) bit
and the DNZ (denormal operands to zero) bit and DNOD is set while DNZ is clear.

• The instruction produces the result and exceptions required by Section 4.7.10, possibly
modified by the UDNZ bit described in Section 4.7.7.11.

Regardless of the setting of the INVD (invalid operation disable) bit, the implementation may
choose not to trap on valid operations that involve quiet NaNs and infinities as operands for
IEEE instructions that are modified by any valid qualifier combination that includes the /S
(exception completion) qualifier.

4.7.7.5 Division by Zero (DZE) Arithmetic Trap

A division by zero arithmetic trap is taken if the numerator does not cause an invalid operation
trap and the denominator is zero.

The instruction cannot disable the trap and, if the trap occurs, an UNPREDICTABLE value is
stored in the result register. However, under some conditions, the FPCR can dynamically dis-
able the trap, as described in Section 4.7.7.10, producing a correct IEEE result, as described in
Section 4.7.10.

If an implementation does not support the DZED (division by zero disable) bit, it may respond
to the IEEE division of 0/0 by delivering a division by zero trap to the operating system, which
IEEE compliant software must change to an invalid operation trap for the user.

4.7.7.6 Overflow (OVF) Arithmetic Trap

An overflow arithmetic trap is signaled if the rounded result exceeds in magnitude the largest
finite number of the destination format.

The instruction cannot disable the trap and, if the trap occurs, an UNPREDICTABLE value is
stored in the result register. However, under some conditions, the FPCR can dynamically dis-
able the trap, as described in Section 4.7.7.10, producing a correct IEEE result, as described in
Section 4.7.10.
Instruction Descriptions 4–77

ge).

arith-
ble the
s mod-

. If an
t result
ly dis-

nded
ong-
.

rder

 inte-

4.7.7.4
. The

 valid
able
p

emen-
 IEEE
tation
trap as

le bits,
4.7.7.7 Underflow (UNF) Arithmetic Trap

An underflow occurs if the rounded result is smaller in magnitude than the smallest finite num-
ber of the destination format.

If an underflow occurs, a true zero (64 bits of zero) is always stored in the result register. In the
case of an IEEE operation that takes an underflow arithmetic trap, a true zero is stored even if
the result after rounding would have been –0 (underflow below the negative denormal ran

If an underflow occurs and underflow traps are enabled by the instruction, an underflow
metic trap is signaled. However, under some conditions, the FPCR can dynamically disa
trap, as described in Section 4.7.7.10, producing the result described in Section 4.7.10, a
ified by the UNDZ bit described in Section 4.7.7.11.

4.7.7.8 Inexact Result (INE) Arithmetic Trap

An inexact result occurs if the infinitely precise result differs from the rounded result.

If an inexact result occurs, the normal rounded result is still stored in the result register
inexact result occurs and inexact result traps are enabled by the instruction, an inexac
arithmetic trap is signaled. However, under some conditions, the FPCR can dynamical
able the trap; see Section 4.7.7.10 for information.

4.7.7.9 Integer Overflow (IOV) Arithmetic Trap

In conversions from floating to quadword integer, an integer overflow occurs if the rou
result is outside the range –2**63..2**63–1. In conversions from quadword integer to l
word integer, an integer overflow occurs if the result is outside the range –2**31..2**31–1

If an integer overflow occurs in CVTxQ or CVTQL, the true result truncated to the low-o
64 or 32 bits respectively is stored in the result register.

If an integer overflow occurs and integer overflow traps are enabled by the instruction, an
ger overflow arithmetic trap is signaled.

4.7.7.10 IEEE Floating-Point Trap Disable Bits

In the case of IEEE exception completion modes, any of the traps described in Sections
through 4.7.7.9 may be disabled by setting the appropriate trap disable bit in the FPCR
trap disable bits only affect the IEEE trap modes when the instruction is modified by any
qualifier combination that includes the /S (exception completion) qualifier. The trap dis
bits (DNOD, DZED, INED, INVD, OVFD, and UNFD) do not affect any of the VAX tra
modes.

If a trap disable bit is set and the corresponding trap condition occurs, the hardware impl
tation sets the result of the operation to the nontrapping result value as specified in the
standard and Section 4.7.10 and modified by the denormal control bits. If the implemen
is unable to calculate the required result, it ignores the trap disable bit and signals a
usual.

Note that a hardware implementation may choose to support any subset of the trap disab
including the empty subset.
 4–78 Alpha Architecture Handbook

 the
lt. The

 each
 are not
 a /S
et:
4.7.7.11 IEEE Denormal Control Bits

In the case of IEEE exception completion modes, the handling of denormal operands and
results is controlled by the DNZ and UNDZ bits in the FPCR. These denormal control bits only
affect denormal handling by IEEE instructions that are modified by any valid qualifier combi-
nation that includes the /S (exception completion) qualifier.

The denormal control bits apply only to the IEEE operate instructions – ADD, SUB, MUL,
DIV, SQRT, CMPxx, and CVT with floating-point source operand.

If both the UNFD (underflow disable) bit and the UNDZ (underflow to zero) bit are set in
FPCR, the implementation sets the result of an underflow operation to a true zero resu
zeroing of a denormal result by UNDZ must also be treated as an inexact result.

If the DNZ (denormal operands to zero) bit is set in the FPCR, the implementation treats
denormal operand as if it were a signed zero value. The source operands in the register
changed. If DNZ is set, IEEE operations with any valid qualifier combination that includes
qualifier signal arithmetic traps as if any denormal operand were zero; that is, with DNZ s

• An IEEE operation with a denormal operand never generates an overflow, underflow, or
inexact result arithmetic trap.

• Dividing by a denormal operand is a division by zero or invalid operation as appropri-
ate.

• Multiplying a denormal by infinity is an invalid operation.

• A SQRT of a negative denormal produces a –0 instead of an invalid operation.

• A denormal operand, treated as zero, does not take the denormal operand exception trap
controlled by the DNOD bit in the FPCR.

Note that a hardware implementation may choose to support any subset of the denormal con-
trol bits, including the empty subset.

4.7.8 Floating-Point Control Register (FPCR)

When an IEEE floating-point operate instruction specifies dynamic mode (/D) in its function
field (function field bits <12:11> = 11), the rounding mode to be used for the instruction is
derived from the FPCR register. The layout of the rounding mode bits and their assignments
matches exactly the format used in the 11-bit function field of the floating-point operate
instructions. The function field is described in Section 4.7.9.

In addition, the FPCR gives a summary of each exception type for the exception conditions
detected by all IEEE floating-point operates thus far, as well as an overall summary bit that
indicates whether any of these exception conditions has been detected. The individual excep-
tion bits match exactly in purpose and order the exception bits found in the exception summary
quadword that is pushed for arithmetic traps. However, for each instruction, these exception
bits are set independent of the trapping mode specified for the instruction. Therefore, even
though trapping may be disabled for a certain exceptional condition, the fact that the excep-
tional condition was encountered by an instruction is still recorded in the FPCR.

Floating-point operates that belong to the IEEE subset and CVTQL, which belongs to both
Instruction Descriptions 4–79

an
-

VAX and IEEE subsets, appropriately set the FPCR exception bits. It is UNPREDICTABLE
whether floating-point operates that belong only to the VAX floating-point subset set the
FPCR exception bits.

Alpha floating-point hardware only transitions these exception bits from zero to one. Once set
to one, these exception bits are only cleared when software writes zero into these bits by writ-
ing a new value into the FPCR.

Section 4.7.2 allows certain of the FPCR bits to be subsetted.

The format of the FPCR is shown in Figure 4–1 and described in Table 4–11.

Figure 4–1: Floating-Point Control Register (FPCR) Format

Table 4–11: Floating-Point Control Register (FPCR) Bit Descriptions

Bit Description (Meaning When Set)

63 Summary Bit (SUM). Records bitwise OR of FPCR exception bits. Equal to
FPCR<57 |56 | 55 | 54 | 53 | 52>.

62 Inexact Disable (INED)†. Suppress INE trap and place correct IEEE nontrapping
result in the destination register.

61 Underflow Disable (UNFD)†. Suppress UNF trap and place correct IEEE nontrap-
ping result in the destination register if the implementation is capable of produc-
ing correct IEEE nontrapping result. The correct result value is determined
according to the value of the UNDZ bit.

60 Underflow to Zero (UNDZ)†. When set together with UNFD, on underflow, the
hardware places a true zero (64 bits of zero) in the destination register rather than
the result specified by the IEEE standard.

59–58 Dynamic Rounding Mode (DYN). Indicates the rounding mode to be used by
IEEE floating-point operate instruction when the instruction’s function field spec
ifies dynamic mode (/D). Assignments are:

63 62 60 0

S
U
M

O
V

N
E

U
N
F

O
V
F

D
Z
E

N
V

5859 57 56 55 54 53 52 51

RAZ/IGNN
V

50 49 48

D

D
Z
E
D

O
V
F
D

DYN
_RM

U
N
D
Z

U
N
F

61

D

N
E
D

I I I II
47 46

D
N
Z

N
O
D

D

DYN IEEE Rounding Mode Selected
00 Chopped rounding mode

01 Minus infinity
10 Normal rounding

11 Plus infinity
 4–80 Alpha Architecture Handbook

FPCR is read from and written to the floating-point registers by the MT_FPCR and MF_FPCR
instructions respectively, which are described in Section 4.7.8.1.

57 Integer Overflow (IOV). An integer arithmetic operation or a conversion from
floating to integer overflowed the destination precision.

56 Inexact Result (INE). A floating arithmetic or conversion operation gave a result
that differed from the mathematically exact result.

55 Underflow (UNF). A floating arithmetic or conversion operation underflowed the
destination exponent.

54 Overflow (OVF). A floating arithmetic or conversion operation overflowed the
destination exponent.

53 Division by Zero (DZE). An attempt was made to perform a floating divide oper-
ation with a divisor of zero.

52 Invalid Operation (INV). An attempt was made to perform a floating arithmetic,
conversion, or comparison operation, and one or more of the operand values were
illegal.

51 Overflow Disable (OVFD)†. Suppress OVF trap and place correct IEEE nontrap-
ping result in the destination register if the implementation is capable of produc-
ing correct IEEE nontrapping results.

50 Division by Zero Disable (DZED)†. Suppress DZE trap and place correct IEEE
nontrapping result in the destination register if the implementation is capable of
producing correct IEEE nontrapping results.

49 Invalid Operation Disable (INVD)†. Suppress INV trap and place correct IEEE
nontrapping result in the destination register if the implementation is capable of
producing correct IEEE nontrapping results.

48 Denormal Operands to Zero (DNZ)†. Treat all denormal operands as a signed zero
value with the same sign as the denormal.

47 Denormal Operand Exception Disable (DNOD)†. Suppress INV trap for valid
operations that involve denormal operand values and place the correct IEEE non-
trapping result in the destination register if the implementation is capable of pro-
cessing the denormal operand. If the result of the operation underflows, the
correct result is determined according to the value of the UNDZ bit. If DNZ is set,
DNOD has no effect because a denormal operand is treated as having a zero value
instead of a denormal value.

46–0 Reserved. Read as Zero. Ignored when written.

† Bit only has meaning for IEEE instructions when any valid qualifier combination that
includes exception completion (/S) is specified.

Table 4–11: Floating-Point Control Register (FPCR) Bit Descriptions (Continued)

Bit Description (Meaning When Set)
Instruction Descriptions 4–81

FPCR and the instructions to access it are required for an implementation that supports float-
ing-point (see Section 4.7.8). On implementations that do not support floating-point, the
instructions that access FPCR (MF_FPCR and MT_FPCR) take an Illegal Instruction Trap.

Software Note:
Support for FPCR is required on a system that supports the OpenVMS Alpha operating
system even if that system does not support floating-point.

4.7.8.1 Accessing the FPCR

Because Alpha floating-point hardware can overlap the execution of a number of float-
ing-point instructions, accessing the FPCR must be synchronized with other floating-point
instructions. An EXCB instruction must be issued both prior to and after accessing the FPCR
to ensure that the FPCR access is synchronized with the execution of previous and subsequent
floating-point instructions; otherwise synchronization is not ensured.

Issuing an EXCB followed by an MT_FPCR followed by another EXCB ensures that only
floating-point instructions issued after the second EXCB are affected by and affect the new
value of the FPCR. Issuing an EXCB followed by an MF_FPCR followed by another EXCB
ensures that the value read from the FPCR only records the exception information for float-
ing-point instructions issued prior to the first EXCB.

Consider the following example:

ADDT/D
EXCB ;1
MT_FPCR F1,F1,F1
EXCB ;2
SUBT/D

Without the first EXCB, it is possible in an implementation for the ADDT/D to execute in par-
allel with the MT_FPCR. Thus, it would be UNPREDICTABLE whether the ADDT/D was
affected by the new rounding mode set by the MT_FPCR and whether fields cleared by the
MT_FPCR in the exception summary were subsequently set by the ADDT/D.

Without the second EXCB, it is possible in an implementation for the MT_FPCR to execute in
parallel with the SUBT/D. Thus, it would be UNPREDICTABLE whether the SUBT/D was
affected by the new rounding mode set by the MT_FPCR and whether fields cleared by the
MT_FPCR in the exception summary field of FPCR were previously set by the SUBT/D.

Specifically, code should issue an EXCB before and after it accesses the FPCR if that code
needs to see valid values in FPCR bits <63> and <57:52>. An EXCB should be issued before
attempting to write the FPCR if the code expects changes to bits <59:52> not to have depen-
dencies with prior instructions. An EXCB should be issued after attempting to write the FPCR
if the code expects subsequent instructions to have dependencies with changes to bits <59:52>.
 4–82 Alpha Architecture Handbook

.
an be

ed had

lows:

are
nerated
the
r
s the
ware
to the
must
bits

ol bits
e
t, the
hould
4.7.8.2 Default Values of the FPCR

Processor initialization leaves the value of FPCR UNPREDICTABLE.

Software Note:

Compaq software should initialize FPCR<DYN> = 10 during program activation. Using
this default, a program can be coded to use only dynamic rounding without the need to
explicitly set the rounding mode to normal rounding in its start-up code.

Program activation normally clears all other fields in the FPCR. However, this behavior
may depend on the operating system.

4.7.8.3 Saving and Restoring the FPCR

The FPCR must be saved and restored across context switches so that the FPCR value of one
process does not affect the rounding behavior and exception summary of another process.

The dynamic rounding mode put into effect by the programmer (or initialized by image activa-
tion) is valid for the entirety of the program and remains in effect until subsequently changed
by the programmer or until image run-down occurs.

Software Notes:
The following software notes apply to saving and restoring the FPCR:

1. The IEEE standard precludes saving and restoring the FPCR across subroutine calls.

2. The IEEE standard requires that an implementation provide status flags that are set
whenever the corresponding conditions occur and are reset only at the user’s request
The exception bits in the FPCR do not satisfy that requirement, because they c
spuriously set by instructions in a trap shadow that should not have been execut
the trap been taken synchronously.

The IEEE status flags can be provided by software (as software status bits) as fol

Trap interface software (usually the operating system) keeps a set of softw
status bits and a mask of the traps that the user wants to receive. Code is ge
with the /SUI qualifiers. For a particular exception, the software clears
corresponding trap disable bit if either the corresponding software status bit is 0 o
if the user wants to receive such traps. If a trap occurs, the software locate
offending instruction in the trap shadow, simulates it and sets any of the soft
status bits that are appropriate. Then, the software either delivers the trap
user program or disables further delivery of such traps. The user program
interface to this trap interface software to set or clear any of the software status
or to enable or disable floating-point traps. See Section B.2.

When such a scheme is being used, the trap disable bits and denormal contr
should be modified only by the trap interface software. If the disable bits ar
spuriously cleared, unnecessary traps may occur. If they are spuriously se
software may fail to set the correct values in the software status bits. Programs s
call routines in the trap interface software to set or clear bits in the FPCR.
Instruction Descriptions 4–83

 Or,
ry of

gram
nt
fined
ce of

APB

float-

 the
able
oat-
.

at are
Compaq software may choose to initialize the software status bits and the trap disable
bits to all 1’s to avoid any initial trapping when an exception condition first occurs.
software may choose to initialize those bits to all 0’s in order to provide a summa
the exception behavior when the program terminates.

In any event, the exception bits in the FPCR are still useful to programs. A pro
can clear all of the exception bits in the FPCR, execute a single floating-poi
instruction, and then examine the status bits to determine which hardware-de
exceptions the instruction encountered. For this operation to work in the presen
various implementation options, the single instruction should be followed by a TR
or EXCB instruction, and exception completion by the system software should save
and restore the FPCR registers without other modifications.

3. Because of the way the LDS and STS instructions manipulate bits <61:59> of
ing-point registers, they should not be used to manipulate FPCR values.

4.7.9 Floating-Point Instruction Function Field Format

The function code for IEEE and VAX floating-point instructions, bits <15..5>, contain
function field. That field is shown in Figure 4–2 and described for IEEE floating-point in T
4–12 and for VAX floating-point in Table 4–13. Function codes for the independent fl
ing-point instructions, those with opcode 1716, do not correspond to the function fields below

The function field contains subfields that specify the trapping and rounding modes th
enabled for the instruction, the source datatype, and the instruction class.

Figure 4–2: Floating-Point Instruction Function Field

Opcode Fa Fb Fc
T
R
P

R
N
D

S
R
C

F
N
C

31 25 20 15 12 10 8 4 0591113162126
 4–84 Alpha Architecture Handbook

Table 4–12: IEEE Floating-Point Function Field Bit Summary

Bits Field Meaning†

15–13 TRP Trapping modes:

12–11 RND Rounding modes:

10–9 SRC Source datatype:

Contents Meaning for Opcodes 1416 and 1616

000 Imprecise (default)

001 Underflow enable (/U) — floating-point output
Integer overflow enable (/V) — integer output

010 UNPREDICTABLE for opcode 1616 instructions
Reserved for opcode 1416 instructions

011 UNPREDICTABLE for opcode 1616 instructions

Reserved for opcode 1416 instructions

100 UNPREDICTABLE for opcode 1616 instructions
Reserved for opcode 1416 instructions

101 /SU — floating-point output
/SV — integer output

110 UNPREDICTABLE for opcode 1616 instructions
Reserved for opcode 1416 instructions

111 /SUI — floating-point output
/SVI — integer output

Contents Meaning for Opcodes 1616 and 1416

00 Chopped (/C)
01 Minus infinity (/M)

10 Normal (default)
11 Dynamic (/D)

Contents Meaning for
Opcode 1616

Meaning for
Opcode 1416

00 S_floating S_floating

01 Reserved Reserved
10 T_floating T_floating

11 Q_fixed Reserved
Instruction Descriptions 4–85

8–5 FNC Instruction class:

† Encodings for the instructions CVTST and CVTST/S are exceptions to this table; use the
encodings in Section C.1.

Table 4–12: IEEE Floating-Point Function Field Bit Summary (Continued)

Bits Field Meaning†

Contents Meaning for
Opcode 1616

Meaning for
Opcode 1416

0000 ADDx Reserved
0001 SUBx Reserved

0010 MULx Reserved
0011 DIVx Reserved

0100 CMPxUN ITOFS/ITOFT
0101 CMPxEQ Reserved

0110 CMPxLT Reserved
0111 CMPxLE Reserved

1000 Reserved Reserved
1001 Reserved Reserved

1010 Reserved Reserved
1011 Reserved SQRTS/SQRTT

1100 CVTxS Reserved
1101 Reserved Reserved

1110 CVTxT Reserved

1111 CVTxQ Reserved
 4–86 Alpha Architecture Handbook

Table 4–13: VAX Floating-Point Function Field Bit Summary

Bits Field Meaning

15–13 TRP Trapping modes:

12–11 RND Rounding modes:

10–9 SRC Source datatype:†

Contents Meaning for Opcodes 1416 and 1516

000 Imprecise (default)

001 Underflow enable (/U) – floating-point output
Integer overflow enable (/V) – integer output

010 UNPREDICTABLE for opcode 1516 instructions

Reserved for opcode 1416 instructions

011 UNPREDICTABLE for opcode 1516 instructions
Reserved for opcode 1416 instructions

100 /S – Exception completion enable

101 /SU – floating-point output
/SV – integer output

110 UNPREDICTABLE for opcode 1516 instructions

Reserved for opcode 1416 instructions

111 UNPREDICTABLE for opcode 1516 instructions
Reserved for opcode 1416 instructions

Contents Meaning for Opcodes 1516 and 1416

00 Chopped (/C)

01 UNPREDICTABLE
10 Normal (default)

11 UNPREDICTABLE

Contents Meaning for Opcode 1516 Meaning for Opcode 1416

00 F_floating F_floating
01 D_floating F_floating

10 G_floating G_floating
11 Q_fixed Reserved
Instruction Descriptions 4–87

4.7.10 IEEE Standard

The IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Standard 754-1985) is
included by reference.

This standard leaves certain operations as implementation dependent. The remainder of this
section specifies the behavior of the Alpha architecture in these situations. Note that this
behavior may be supplied by either hardware (if the invalid operation disable, or INVD, bit is
implemented) or by software. See Sections 4.7.7.10, 4.7.7.11, 4.7.8, 4.7.8.3, and Section B.1.

4.7.10.1 Conversion of NaN and Infinity Values

Conversion of a NaN or an Infinity value to an integer gives a result of zero.

Conversion of a NaN value from S_floating to T_floating gives a result identical to the input,
except that the most significant fraction bit (bit 51) is set to indicate a quiet NaN.

Conversion of a NaN value from T_floating to S_floating gives a result identical to the input,
except that the most significant fraction bit (bit 51) is set to indicate a quiet NaN, and bits
<28:0> are cleared to zero.

8–5 FNC Instruction class:

† In the SRC field, both 00 and 01 specify the F_floating source datatype for opcode 1416.

Table 4–13: VAX Floating-Point Function Field Bit Summary (Continued)

Bits Field Meaning

Contents Meaning for
Opcode 1516

Meaning for
Opcode 1416

0000 ADDx Reserved
0001 SUBx Reserved

0010 MULx Reserved
0011 DIVx Reserved

0100 CMPxUN ITOFF
0101 CMPxEQ Reserved

0110 CMPxLT Reserved
0111 CMPxLE Reserved

1000 Reserved Reserved
1001 Reserved Reserved

1010 Reserved SQRTF/SQRTG
1011 Reserved Reserved

1100 CVTxF Reserved
1101 CVTxD Reserved

1110 CVTxG Reserved
1111 CVTxQ Reserved
 4–88 Alpha Architecture Handbook

4.7.10.2 Copying NaN Values

Copying a NaN value without changing its precision does not cause an invalid operation
exception.

4.7.10.3 Generating NaN Values

When an operation is required to produce a NaN and none of its inputs are NaN values, the
result of the operation is the quiet NaN value that has the sign bit set to one, all exponent bits
set to one (to indicate a NaN), the most significant fraction bit set to one (to indicate that the
NaN is quiet), and all other fraction bits cleared to zero. This value is referred to as "the canon-
ical quiet NaN."

4.7.10.4 Propagating NaN Values

When an operation is required to produce a NaN and one or both of its inputs are NaN values,
the IEEE standard requires that quiet NaN values be propagated when possible. With the Alpha
architecture, the result of such an operation is a NaN generated according to the first of the fol-
lowing rules that is applicable:

1. If the operand in the Fb register of the operation is a quiet NaN, that value is used as the
result.

2. If the operand in the Fb register of the operation is a signaling NaN, the result is the
quiet NaN formed from the Fb value by setting the most significant fraction bit (bit 51)
to a one bit.

3. If the operation uses its Fa operand and the value in the Fa register is a quiet NaN, that
value is used as the result.

4. If the operation uses its Fa operand and the value in the Fa register is a signaling NaN,
the result is the quiet NaN formed from the Fa value by setting the most significant
fraction bit (bit 51) to a one bit.

5. The result is the canonical quiet NaN.
Instruction Descriptions 4–89

4.8 Memory Format Floating-Point Instructions

The instructions in this section move data between the floating-point registers and memory.
They use the Memory instruction format. They do not interpret the bits moved in any way; spe-
cifically, they do not trap on non-finite values.

The instructions are summarized in Table 4–14.

Table 4–14: Memory Format Floating-Point Instructions Summary

Mnemonic Operation Subset

LDF Load F_floating VAX

LDG Load G_floating (Load D_floating) VAX

LDS Load S_floating (Load Longword Integer) Both

LDT Load T_floating (Load Quadword Integer) Both

STF Store F_floating VAX

STG Store G_floating (Store D_floating) VAX

STS Store S_floating (Store Longword Integer) Both

STT Store T_floating (Store Quadword Integer) Both
 4–90 Alpha Architecture Handbook

place-
d, and
d
t. The
4.8.1 Load F_floating

Format:

Operation:
va ← {Rbv + SEXT(disp)}

CASE
 big_endian_data: va’ ← va XOR 1002
 little_endian_data: va’ ← va
ENDCASE

Fa ← (va’)<15> || MAP_F((va’)<14:7>) || (va’)<6:0> ||
 (va’)<31:16> || 0<28:0>

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
LDF fetches an F_floating datum from memory and writes it to register Fa. If the data is not
naturally aligned, an alignment exception is generated.

The MAP_F function causes the 8-bit memory-format exponent to be expanded to an 11-bit
register-format exponent according to Table 2–1.

The virtual address is computed by adding register Rb to the sign-extended 16-bit dis
ment. For a big-endian longword access, va<2> (bit 2 of the virtual address) is inverte
any memory management fault is reported for va (not va’). The source operand is fetche
from memory and the bytes are reordered to conform to the F_floating register forma
result is then zero-extended in the low-order longword and written to register Fa.

LDF Fa.wf,disp.ab(Rb.ab) !Memory format

Access Violation
Fault on Read

Alignment
Translation Not Valid

LDF Load F_floating

None
Instruction Descriptions 4–91

4.8.2 Load G_floating

Format:

Operation:
va ← {Rbv + SEXT(disp)}
Fa ← (va)<15:0> || (va)<31:16> || (va)<47:32> || (va)<63:48>

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
LDG fetches a G_floating (or D_floating) datum from memory and writes it to register Fa. If
the data is not naturally aligned, an alignment exception is generated.

The virtual address is computed by adding register Rb to the sign-extended 16-bit displace-
ment. The source operand is fetched from memory, the bytes are reordered to conform to the
G_floating register format (also conforming to the D_floating register format), and the result is
then written to register Fa.

LDG Fa.wg,disp.ab(Rb.ab) !Memory format

Access Violation
Fault on Read

Alignment
Translation Not Valid

LDG Load G_floating (Load D_floating)

None
 4–92 Alpha Architecture Handbook

place-
d, and
d
r Fa.
:59>
4.8.3 Load S_floating

Format:

Operation:
va ← {Rbv + SEXT(disp)}

CASE
 big_endian_data: va’ ← va XOR 1002
 little_endian_data: va’ ← va
ENDCASE

Fa ← (va’)<31> || MAP_S((va’)<30:23>) || (va’)<22:0> || 0<28:0>

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
LDS fetches a longword (integer or S_floating) from memory and writes it to register Fa. If the
data is not naturally aligned, an alignment exception is generated. The MAP_S function causes
the 8-bit memory-format exponent to be expanded to an 11-bit register-format exponent
according to Table 2–2.

The virtual address is computed by adding register Rb to the sign-extended 16-bit dis
ment. For a big-endian longword access, va<2> (bit 2 of the virtual address) is inverte
any memory management fault is reported for va (not va’). The source operand is fetche
from memory, is zero-extended in the low-order longword, and then written to registe
Longword integers in floating registers are stored in bits <63:62,58:29>, with bits <61
ignored and zeros in bits <28:0>.

LDS Fa.ws,disp.ab(Rb.ab) !Memory format

Access Violation
Fault on Read

Alignment
Translation Not Valid

LDS Load S_floating (Load Longword Integer)

None
Instruction Descriptions 4–93

4.8.4 Load T_floating

Format:

Operation:
va ← {Rbv + SEXT(disp)}

Fa ← (va)<63:0>

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
LDT fetches a quadword (integer or T_floating) from memory and writes it to register Fa. If
the data is not naturally aligned, an alignment exception is generated.

The virtual address is computed by adding register Rb to the sign-extended 16-bit displace-
ment. The source operand is fetched from memory and written to register Fa.

LDT Fa.wt,disp.ab(Rb.ab) !Memory format

Access Violation
Fault on Read

Alignment
Translation Not Valid

LDT Load T_floating (Load Quadword Integer)

None
 4–94 Alpha Architecture Handbook

4.8.5 Store F_floating

Format:

Operation:
va ← {Rbv + SEXT(disp)}

CASE
 big_endian_data: va’ ← va XOR 1002
 little_endian_data: va’ ← va
ENDCASE

(va’)<31:0> ← Fav<44:29> || Fav<63:62> || Fav<58:45>

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

STF stores an F_floating datum from Fa to memory. If the data is not naturally aligned, an
alignment exception is generated.

The virtual address is computed by adding register Rb to the sign-extended 16-bit displace-
ment. For a big-endian longword access, va<2> (bit 2 of the virtual address) is inverted, and
any memory management fault is reported for va (not va’). The bits of the source operand are
fetched from register Fa, the bits are reordered to conform to F_floating memory format, and
the result is then written to memory. Bits <61:59> and <28:0> of Fa are ignored. No checking
is done.

STF Fa.rf,disp.ab(Rb.ab) !Memory format

Access Violation

Fault on Write

Alignment

Translation Not Valid

STF Store F_floating

None
Instruction Descriptions 4–95

4.8.6 Store G_floating

Format:

Operation:
va ← {Rbv + SEXT(disp)}
(va)<63:0> ← Fav<15:0> || Fav<31:16> || Fav<47:32> || Fav<63:48>

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
STG stores a G_floating (or D_floating) datum from Fa to memory. If the data is not naturally
aligned, an alignment exception is generated.

The virtual address is computed by adding register Rb to the sign-extended 16-bit displace-
ment. The source operand is fetched from register Fa, the bytes are reordered to conform to the
G_floating memory format (also conforming to the D_floating memory format), and the result
is then written to memory.

STG Fa.rg,disp.ab(Rb.ab) !Memory format

Access Violation
Fault on Write

Alignment
Translation Not Valid

STG Store G_floating (Store D_floating)

None
 4–96 Alpha Architecture Handbook

4.8.7 Store S_floating

Format:

Operation:
va ← {Rbv + SEXT(disp)}

CASE
 big_endian_data: va’ ← va XOR 1002
 little_endian_data: va’ ← va
ENDCASE

(va’)<31:0> ← Fav<63:62> || Fav<58:29>

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
STS stores a longword (integer or S_floating) datum from Fa to memory. If the data is not nat-
urally aligned, an alignment exception is generated.

The virtual address is computed by adding register Rb to the sign-extended 16-bit displace-
ment. For a big-endian longword access, va<2> (bit 2 of the virtual address) is inverted, and
any memory management fault is reported for va (not va’). The bits of the source operand are
fetched from register Fa, the bits are reordered to conform to S_floating memory format, and
the result is then written to memory. Bits <61:59> and <28:0> of Fa are ignored. No checking
is done.

STS Fa.rs,disp.ab(Rb.ab) !Memory format

Access Violation
Fault on Write

Alignment
Translation Not Valid

STS Store S_floating (Store Longword Integer)

None
Instruction Descriptions 4–97

4.8.8 Store T_floating

Format:

Operation:

va ← {Rbv + SEXT(disp)}
(va)<63:0> ← Fav<63:0>

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
STT stores a quadword (integer or T_floating) datum from Fa to memory. If the data is not nat-
urally aligned, an alignment exception is generated.

The virtual address is computed by adding register Rb to the sign-extended 16-bit displace-
ment. The source operand is fetched from register Fa and written to memory.

STT Fa.rt,disp.ab(Rb.ab) !Memory format

Access Violation
Fault on Write

Alignment
Translation Not Valid

STT Store T_floating (Store Quadword Integer)

None
 4–98 Alpha Architecture Handbook

4.9 Branch Format Floating-Point Instructions

Alpha provides six floating conditional branch instructions. These branch-format instructions
test the value of a floating-point register and conditionally change the PC.

They do not interpret the bits tested in any way; specifically, they do not trap on non-finite
values.

The test is based on the sign bit and whether the rest of the register is all zero bits. All 64 bits
of the register are tested. The test is independent of the format of the operand in the register.
Both plus and minus zero are equal to zero. A non-zero value with a sign of zero is greater than
zero. A non-zero value with a sign of one is less than zero. No reserved operand or non-finite
checking is done.

The floating-point branch operations are summarized in Table 4–15:

Table 4–15: Floating-Point Branch Instructions Summary

Mnemonic Operation Subset

FBEQ Floating Branch Equal Both

FBGE Floating Branch Greater Than or Equal Both

FBGT Floating Branch Greater Than Both

FBLE Floating Branch Less Than or Equal Both

FBLT Floating Branch Less Than Both

FBNE Floating Branch Not Equal Both
Instruction Descriptions 4–99

4.9.1 Conditional Branch

Format:

Operation:
{update PC}
va ← PC + {4*SEXT(disp)}
IF TEST(Fav, Condition_based_on_Opcode) THEN
 PC ← va

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
Register Fa is tested. If the specified relationship is true, the PC is loaded with the target vir-
tual address; otherwise, execution continues with the next sequential instruction.

The displacement is treated as a signed longword offset. This means it is shifted left two bits
(to address a longword boundary), sign-extended to 64 bits, and added to the updated PC to
form the target virtual address.

The conditional branch instructions are PC-relative only. The 21-bit signed displacement gives
a forward/backward branch distance of +/–1M instructions.

FBxx Fa.rq,disp.al !Branch format

None

FBEQ Floating Branch Equal

FBGE Floating Branch Greater Than or Equal
FBGT Floating Branch Greater Than

FBLE Floating Branch Less Than or Equal
FBLT Floating Branch Less Than

FBNE Floating Branch Not Equal

None
 4–100 Alpha Architecture Handbook

Notes:

• To branch properly on non-finite operands, compare to F31, then branch on the result of
the compare.

• The largest negative integer (8000 0000 0000 000016) is the same bit pattern as floating
minus zero, so it is treated as equal to zero by the branch instructions. To branch prop-
erly on the largest negative integer, convert it to floating or move it to an integer regis-
ter and do an integer branch.
Instruction Descriptions 4–101

4.10 Floating-Point Operate Format Instructions

The floating-point bit-operate instructions perform copy and integer convert operations on
64-bit register values. The bit-operate instructions do not interpret the bits moved in any way;
specifically, they do not trap on non-finite values.

The floating-point arithmetic-operate instructions perform add, subtract, multiply, divide, com-
pare, register move, squre root, and floating convert operations on 64-bit register values in one
of the four specified floating formats.

Each instruction specifies the source and destination formats of the values, as well as the
rounding mode and trapping mode to be used. These instructions use the Floating-point Oper-
ate format.

Floating-point convert and square-root (FIX) extension implementation note:
The FIX extension to the architecture provides the FTOIx, ITOFx, and SQRTx
instructions. Alpha processors for which the AMASK instruction returns bit 1 set
implement these instructions. Those processors for which AMASK does not return bit 1 set
can take an Illegal Instruction trap, and software can emulate their function, if required.
AMASK is described in Sections 4.11.1 and D.3.

The floating-point operate instructions are summarized in Table 4–16.

Table 4–16: Floating-Point Operate Instructions Summary

Mnemonic Operation Subset

Bit and FPCR Operations:

CPYS Copy Sign Both

CPYSE Copy Sign and Exponent Both

CPYSN Copy Sign Negate Both

CVTLQ Convert Longword to Quadword Both

CVTQL Convert Quadword to Longword Both

FCMOVxx Floating Conditional Move Both

MF_FPCR Move from Floating-point Control Register Both

MT_FPCR Move to Floating-point Control Register Both
 4–102 Alpha Architecture Handbook

Arithmetic Operations

ADDF Add F_floating VAX

ADDG Add G_floating VAX

ADDS Add S_floating IEEE

ADDT Add T_floating IEEE

CMPGxx Compare G_floating VAX

CMPTxx Compare T_floating IEEE

CVTDG Convert D_floating to G_floating VAX

CVTGD Convert G_floating to D_floating VAX

CVTGF Convert G_floating to F_floating VAX

CVTGQ Convert G_floating to Quadword VAX

CVTQF Convert Quadword to F_floating VAX

CVTQG Convert Quadword to G_floating VAX

CVTQS Convert Quadword to S_floating IEEE

CVTQT Convert Quadword to T_floating IEEE

CVTST Convert S_floating to T_floating IEEE

CVTTQ Convert T_floating to Quadword IEEE

CVTTS Convert T_floating to S_floating IEEE

DIVF Divide F_floating VAX

DIVG Divide G_floating VAX

DIVS Divide S_floating IEEE

DIVT Divide T_floating IEEE

FTOIS Floating-point to integer register move, S_floating IEEE

FTOIT Floating-point to integer register move, T_floating IEEE

ITOFF Integer to floating-point register move, F_floating VAX

ITOFS Integer to floating-point register move, S_floating IEEE

ITOFT Integer to floating-point register move, T_floating IEEE

Table 4–16: Floating-Point Operate Instructions Summary (Continued)

Mnemonic Operation Subset
Instruction Descriptions 4–103

Arithmetic Operations

MULF Multiply F_floating VAX

MULG Multiply G_floating VAX

MULS Multiply S_floating IEEE

MULT Multiply T_floating IEEE

SQRTF Square root F_floating VAX

SQRTG Square root G_floating VAX

SQRTS Square root S_floating IEEE

SQRTT Square root T_floating IEEE

SUBF Subtract F_floating VAX

SUBG Subtract G_floating VAX

SUBS Subtract S_floating IEEE

SUBT Subtract T_floating IEEE

Table 4–16: Floating-Point Operate Instructions Summary (Continued)

Mnemonic Operation Subset
 4–104 Alpha Architecture Handbook

4.10.1 Copy Sign

Format:

Operation:
CASE
 CPYS: Fc ← Fav<63> || Fbv<62:0>
 CPYSN: Fc ← NOT(Fav<63>) || Fbv<62:0>
 CPYSE: Fc ← Fav<63:52> || Fbv<51:0>
ENDCASE

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
For CPYS and CPYSN, the sign bit of Fa is fetched (and complemented in the case of CPYSN)
and concatenated with the exponent and fraction bits from Fb; the result is stored in Fc.

For CPYSE, the sign and exponent bits from Fa are fetched and concatenated with the fraction
bits from Fb; the result is stored in Fc.

No checking of the operands is performed.

Notes:

• Register moves can be performed using CPYS Fx,Fx,Fy. Floating-point absolute value
can be done using CPYS F31,Fx,Fy. Floating-point negation can be done using
CPYSN Fx,Fx,Fy. Floating values can be scaled to a known range by using CPYSE.

CPYSy Fa.rq,Fb.rq,Fc.wq !Floating-point Operate format

None

CPYS Copy Sign

CPYSE Copy Sign and Exponent
CPYSN Copy Sign Negate

None
Instruction Descriptions 4–105

lt and

per-
b is
ed in

 with
4.10.2 Convert Integer to Integer

Format:

Operation:
CASE
 CVTQL: Fc ← Fbv<31:30> || 0<2:0> || Fbv<29:0> ||0<28:0>
 CVTLQ: Fc ← SEXT(Fbv<63:62> || Fbv<58:29>)
ENDCASE

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
The two’s-complement operand in register Fb is converted to a two’s-complement resu
written to register Fc. Register Fa must be F31.

The conversion from quadword to longword is a repositioning of the low 32 bits of the o
and, with zero fill and optional integer overflow checking. Integer overflow occurs if F
outside the range –2**31..2**31–1. If integer overflow occurs, the truncated result is stor
Fc, and an arithmetic trap is taken if enabled.

The conversion from longword to quadword is a repositioning of 32 bits of the operand,
sign extension.

CVTxy Fb.rq,Fc.wx !Floating-point Operate format

Integer Overflow, CVTQL only

CVTLQ Convert Longword to Quadword

CVTQL Convert Quadword to Longword

Trapping: Exception Completion (/S) (CVTQL only)
Integer Overflow Enable (/V) (CVTQL only)
 4–106 Alpha Architecture Handbook

4.10.3 Floating-Point Conditional Move

Format:

Operation:
IF TEST(Fav, Condition_based_on_Opcode) THEN

 Fc ← Fbv

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
Register Fa is tested. If the specified relationship is true, register Fb is written to register Fc;
otherwise, the move is suppressed and register Fc is unchanged. The test is based on the sign
bit and whether the rest of the register is all zero bits, as described for floating branches in Sec-
tion 4.9.

FCMOVxx Fa.rq,Fb.rq,Fc.wq !Floating-point Operate format

None

FCMOVEQ FCMOVE if Register Equal to Zero

FCMOVGE FCMOVE if Register Greater Than or Equal to Zero
FCMOVGT FCMOVE if Register Greater Than Zero

FCMOVLE FCMOVE if Register Less Than or Equal to Zero
FCMOVLT FCMOVE if Register Less Than Zero

FCMOVNE FCMOVE if Register Not Equal to Zero

None
Instruction Descriptions 4–107

Notes:

Except that it is likely in many implementations to be substantially faster, the instruction:

 FCMOVxx Fa,Fb,Fc

is exactly equivalent to:

 FByy Fa,label ! yy = NOT xx
 CPYS Fb,Fb,Fc
label: ...

For example, a branchless sequence for:

 F1=MAX(F1,F2)

is:
 CMPxLT F1,F2,F3 ! F3=one if F1<F2; x=F/G/S/T
 FCMOVNE F3,F2,F1 ! Move F2 to F1 if F1<F2
 4–108 Alpha Architecture Handbook

4.10.4 Move from/to Floating-Point Control Register

Format:

Operation:
CASE
 MF_FPCR: Fa ← FPCR
 MT_FPCR: FPCR ← Fav
ENDCASE

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
The Floating-point Control Register (FPCR) is read from (MF_FPCR) or written to
(MT_FPCR), a floating-point register. The floating-point register to be used is specified by the
Fa, Fb, and Fc fields all pointing to the same floating-point register. If the Fa, Fb, and Fc fields
do not all point to the same floating-point register, then it is UNPREDICTABLE which regis-
ter is used. If the Fa, Fb, and Fc fields do not all point to the same floating-point register, the
resulting values in the Fc register and in FPCR are UNPREDICTABLE.

If the Fc f ield is F31 in the case of MT_FPCR, t he re sul t ing va lue i n FPCR is
UNPREDICTABLE.

The use of these instructions and the FPCR are described in Section 4.7.8.

Mx_FPCR Fa.rq,Fa.rq,Fa.wq !Floating-point Operate format

None

MF_FPCR Move from Floating-point Control Register

MT_FPCR Move to Floating-point Control Register

None
Instruction Descriptions 4–109

4.10.5 VAX Floating Add

Format:

Operation:
Fc ← Fav + Fbv

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
Register Fa is added to register Fb, and the sum is written to register Fc.

The sum is rounded or chopped to the specified precision, and then the corresponding range is
checked for overflow/underflow. The single-precision operation on canonical single-precision
values produces a canonical single-precision result.

An invalid operation trap is signaled if either operand has exp=0 and is not a true zero (that is,
VAX reserved operands and dirty zeros trap). The contents of Fc are UNPREDICTABLE if
this occurs. See Section 4.7.7 for details of the stored result on overflow or underflow.

ADDx Fa.rx,Fb.rx,Fc.wx !Floating-point Operate format

Invalid Operation
Overflow

Underflow

ADDF Add F_floating
ADDG Add G_floating

Rounding: Chopped (/C)

Trapping: Exception Completion (/S)
Underflow Enable (/U)
 4–110 Alpha Architecture Handbook

4.10.6 IEEE Floating Add

Format:

Operation:
Fc ← Fav + Fbv

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
Register Fa is added to register Fb, and the sum is written to register Fc.

The sum is rounded to the specified precision and then the corresponding range is checked for
overflow/underflow. The single-precision operation on canonical single-precision values pro-
duces a canonical single-precision result.

See Section 4.7.7 for details of the stored result on overflow, underflow, or inexact result.

ADDx Fa.rx,Fb.rx,Fc.wx !Floating-point Operate format

Invalid Operation
Overflow

Underflow
Inexact Result

ADDS Add S_floating

ADDT Add T_floating

Rounding: Dynamic (/D)
Minus infinity (/M)

Chopped (/C)
Trapping: Exception Completion (/S)

Underflow Enable (/U)
Inexact Enable (/I)
Instruction Descriptions 4–111

4.10.7 VAX Floating Compare

Format:

Operation:
IF Fav SIGNED_RELATION Fbv THEN
 Fc ← 4000 0000 0000 000016
ELSE
 Fc ← 0000 0000 0000 000016

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
The two operands in Fa and Fb are compared. If the relationship specified by the qualifier is
true, a non-zero floating value (0.5) is written to register Fc; otherwise, a true zero is written to
Fc.

Comparisons are exact and never overflow or underflow. Three mutually exclusive relations
are possible: less than, equal, and greater than.

An invalid operation trap is signaled if either operand has exp=0 and is not a true zero (that is,
VAX reserved operands and dirty zeros trap). The contents of Fc are UNPREDICTABLE if
this occurs.

Notes:

• Compare Less Than A,B is the same as Compare Greater Than B,A; Compare Less
Than or Equal A,B is the same as Compare Greater Than or Equal B,A. Therefore, only
the less-than operations are included.

CMPGyy Fa.rg,Fb.rg,Fc.wq !Floating-point Operate format

Invalid Operation

CMPGEQ Compare G_floating Equal
CMPGLE Compare G_floating Less Than or Equal

CMPGLT Compare G_floating Less Than

Trapping: Exception Completion (/S)
 4–112 Alpha Architecture Handbook

ation
4.10.8 IEEE Floating Compare

Format:

Operation:
IF Fav SIGNED_RELATION Fbv THEN
 Fc ← 4000 0000 0000 000016
ELSE
 Fc ← 0000 0000 0000 000016

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

The two operands in Fa and Fb are compared. If the relationship specified by the qualifier is
true, a non-zero floating value (2.0) is written to register Fc; otherwise, a true zero is written to
Fc.

Comparisons are exact and never overflow or underflow. Four mutually exclusive relations are
possible: less than, equal, greater than, and unordered. The unordered relation is true if one or
both operands are NaN. (This behavior must be provided by an operating system (OS) comple-
tion handler, since NaNs trap.) Comparisons ignore the sign of zero, so +0 = –0.

Comparisons with plus and minus infinity execute normally and do not take an invalid oper
trap.

Notes:

• In order to use CMPTxx with exception completion handling, it is necessary to specify
the /SU IEEE trap mode, even though an underflow trap is not possible.

• Compare Less Than A,B is the same as Compare Greater Than B,A; Compare Less
Than or Equal A,B is the same as Compare Greater Than or Equal B,A. Therefore, only
the less-than operations are included.

CMPTyy Fa.rx,Fb.rx,Fc.wq !Floating-point Operate format

Invalid Operation

CMPTEQ Compare T_floating Equal
CMPTLE Compare T_floating Less Than or Equal

CMPTLT Compare T_floating Less Than
CMPTUN Compare T_floating Unordered

Trapping: Exception Completion (/SU)
Instruction Descriptions 4–113

er and
st to
ter Fa

hat is,
LE if
4.10.9 Convert VAX Floating to Integer

Format:

Operation:
Fc ← {conversion of Fbv}

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
The floating operand in register Fb is converted to a two’s-complement quadword numb
written to register Fc. The conversion aligns the operand fraction with the binary point ju
the right of bit zero, rounds as specified, and complements the result if negative. Regis
must be F31.

An invalid operation trap is signaled if the operand has exp=0 and is not a true zero (t
VAX reserved operands and dirty zeros trap). The contents of Fc are UNPREDICTAB
this occurs.

See Section 4.7.7 for details of the stored result on integer overflow.

CVTGQ Fb.rx,Fc.wq !Floating-point Operate format

Invalid Operation

Integer Overflow

CVTGQ Convert G_floating to Quadword

Rounding: Chopped (/C)
Trapping: Exception Completion (/S)

Integer Overflow Enable (/V)
 4–114 Alpha Architecture Handbook

 dou-
mber
ropri-
4.10.10 Convert Integer to VAX Floating

Format:

Operation:
Fc ← {conversion of Fbv<63:0>}

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
The two’s-complement quadword operand in register Fb is converted to a single- or
ble-precision floating result and written to register Fc. The conversion complements a nu
if negative, normalizes it, rounds to the target precision, and packs the result with an app
ate sign and exponent field. Register Fa must be F31.

CVTQy Fb.rq,Fc.wx !Floating-point Operate format

None

CVTQF Convert Quadword to F_floating

CVTQG Convert Quadword to G_floating

Rounding: Chopped (/C)
Instruction Descriptions 4–115

4.10.11 Convert VAX Floating to VAX Floating

Format:

Operation:
Fc ← {conversion of Fbv}

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
The floating operand in register Fb is converted to the specified alternate floating format and
written to register Fc. Register Fa must be F31.

An invalid operation trap is signaled if the operand has exp=0 and is not a true zero (that is,
VAX reserved operands and dirty zeros trap). The contents of Fc are UNPREDICTABLE if
this occurs.

See Section 4.7.7 for details of the stored result on overflow or underflow.

Notes:

• The only arithmetic operations on D_floating values are conversions to and from
G_floating. The conversion to G_floating rounds or chops as specified, removing three
fraction bits. The conversion from G_floating to D_floating adds three low-order zeros
as fraction bits, then the 8-bit exponent range is checked for overflow/underflow.

• The conversion from G_floating to F_floating rounds or chops to single precision, then
the 8-bit exponent range is checked for overflow/underflow.

• No conversion from F_floating to G_floating is required, since F_floating values are
always stored in registers as equivalent G_floating values.

CVTxy Fb.rx,Fc.wx !Floating-point Operate format

Invalid Operation
Overflow

Underflow

CVTDG Convert D_floating to G_floating
CVTGD Convert G_floating to D_floating

CVTGF Convert G_floating to F_floating

Rounding: Chopped (/C)
Trapping: Exception Completion (/S)

Underflow Enable (/U)
 4–116 Alpha Architecture Handbook

ten to
ht of

 F31.
4.10.12 Convert IEEE Floating to Integer

Format:

Operation:
Fc ← {conversion of Fbv}

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

The floating operand in register Fb is converted to a two’s-complement number and writ
register Fc. The conversion aligns the operand fraction with the binary point just to the rig
bit zero, rounds as specified, and complements the result if negative. Register Fa must be

See Section 4.7.7 for details of the stored result on integer overflow and inexact result.

CVTTQ Fb.rx,Fc.wq !Floating-point Operate format

Invalid Operation
Inexact Result

Integer Overflow

CVTTQ Convert T_floating to Quadword

Rounding: Dynamic (/D)

Minus infinity (/M)
Chopped (/C)

Trapping: Exception Completion (/S)
Integer Overflow Enable (/V)

Inexact Enable (/I)
Instruction Descriptions 4–117

ision
ative,
gn and
4.10.13 Convert Integer to IEEE Floating

Format:

Operation:
Fc ← {conversion of Fbv<63:0>}

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

The two’s-complement operand in register Fb is converted to a single- or double-prec
floating result and written to register Fc. The conversion complements a number if neg
normalizes it, rounds to the target precision, and packs the result with an appropriate si
exponent field. Register Fa must be F31.

See Section 4.7.7 for details of the stored result on inexact result.

Notes:

• In order to use CVTQS or CVTQT with exception completion handling, it is necessary
to specify the /SUI IEEE trap mode, even though an underflow trap is not possible.

CVTQy Fb.rq,Fc.wx !Floating-point Operate format

Inexact Result

CVTQS Convert Quadword to S_floating

CVTQT Convert Quadword to T_floating

Rounding: Dynamic (/D)
Minus infinity (/M)

Chopped (/C)
Trapping: Exception Completion (/S)

Inexact Enable (/I)
 4–118 Alpha Architecture Handbook

4.10.14 Convert IEEE S_Floating to IEEE T_Floating

Format:

Operation:
Fc ← {conversion of Fbv}

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
The S_floating operand in register Fb is converted to T_floating format and written to register
Fc. Register Fa must be F31.

Notes:

• The conversion from S_floating to T_floating is exact. No rounding occurs. No under-
flow, overflow, or inexact result can occur. In fact, the conversion for finite values is the
identity transformation.

• A trap handler can convert an S_floating denormal value into the corresponding
T_floating finite value by adding 896 to the exponent and normalizing.

CVTST Fb.rx,Fc.wx ! Floating-point Operate format

Invalid Operation

CVTST Convert S_floating to T_floating

Trapping: Exception Completion (/S)
Instruction Descriptions 4–119

4.10.15 Convert IEEE T_Floating to IEEE S_Floating

Format:

Operation:
Fc ← {conversion of Fbv}

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
The T_floating operand in register Fb is converted to S_floating format and written to register
Fc. Register Fa must be F31.

See Section 4.7.7 for details of the stored result on overflow, underflow, or inexact result.

CVTTS Fb.rx,Fc.wx !Floating-point Operate format

Invalid Operation
Overflow

Underflow
Inexact Result

CVTTS Convert T_floating to S_floating

Rounding: Dynamic (/D)

Minus infinity (/M)
Chopped (/C)

Trapping: Exception Completion (/S)
Underflow Enable (/U)

Inexact Enable (/I)
 4–120 Alpha Architecture Handbook

4.10.16 VAX Floating Divide

Format:

Operation:
Fc ← Fav / Fbv

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
The dividend operand in register Fa is divided by the divisor operand in register Fb and the
quotient is written to register Fc.

The quotient is rounded or chopped to the specified precision and then the corresponding range
is checked for overflow/underflow. The single-precision operation on canonical single-preci-
sion values produces a canonical single-precision result.

An invalid operation trap is signaled if either operand has exp=0 and is not a true zero (that is,
VAX reserved operands and dirty zeros trap). The contents of Fc are UNPREDICTABLE if
this occurs.

A division by zero trap is signaled if Fbv is zero. The contents of Fc are UNPREDICTABLE if
this occurs.

See Section 4.7.7 for details of the stored result on overflow or underflow.

DIVx Fa.rx,Fb.rx,Fc.wx !Floating-point Operate format

Invalid Operation
Division by Zero

Overflow
Underflow

DIVF Divide F_floating

DIVG Divide G_floating

Rounding: Chopped (/C)
Trapping: Exception Completion (/S)

Underflow Enable (/U)
Instruction Descriptions 4–121

4.10.17 IEEE Floating Divide

Format:

Operation:
Fc ← Fav / Fbv

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
The dividend operand in register Fa is divided by the divisor operand in register Fb and the
quotient is written to register Fc.

The quotient is rounded to the specified precision and then the corresponding range is checked
for overflow/underflow. The single-precision operation on canonical single-precision values
produces a canonical single-precision result.

See Section 4.7.7 for details of the stored result on overflow, underflow, or inexact result.

DIVx Fa.rx,Fb.rx,Fc.wx !Floating-point Operate format

Invalid Operation
Division by Zero

Overflow
Underflow

Inexact Result

DIVS Divide S_floating
DIVT Divide T_floating

Rounding: Dynamic (/D)

Minus infinity (/M)
Chopped (/C)

Trapping: Exception Completion (/S)
Underflow Enable (/U)

Inexact Enable (/I)
 4–122 Alpha Architecture Handbook

4.10.18 Floating-Point Register to Integer Register Move

Format:

Operation:
CASE:
 FTOIS:
 Rc<63:32> ← SEXT(Fav<63>)
 Rc<31:0> ← Fav<63:62> || Fav <58:29>
 FTOIT:
 Rc <- Fav
ENDCASE

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
Data in a floating-point register file is moved to an integer register file.

The Fb field must be F31.

The instructions do not interpret bits in the register files; specifically, the instructions do not
trap on non-finite values. Also, the instructions do not access memory.

FTOIS is exactly equivalent to the sequence:
 STS
 LDL

FTOIT is exactly equivalent to the sequence:
 STT
 LDQ

Software Note:
FTOIS and FTOIT are no slower than the corresponding store/load sequence and can be
significantly faster.

FTOIx Fa.rq,Rc.wq !Floating-point Operate format

None

FTOIS Floating-point to Integer Register Move, S_floating

FTOIT Floating-point to Integer Register Move, T_floating

None
Instruction Descriptions 4–123

4.10.19 Integer Register to Floating-Point Register Move

Format:

Operation:
CASE:
 ITOFF:
 Fc ← Rav<31> || MAP_F(Rav<30:23> || Rav<22:0> || 0<28:0>
 ITOFS:
 Fc ← Rav<31> || MAP_S(Rav<30:23> || Rav<22:0> || 0<28:0>
 ITOFT:
 Fc <- Rav
ENDCASE

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
Data in an integer register file is moved to a floating-point register file.

The Rb field must be R31.

The instructions do not interpret bits in the register files; specifically, the instructions do not
trap on non-finite values. Also, the instructions do not access memory.

ITOFF is equivalent to the following sequence, except that the word swapping that LDF nor-
mally performs is not performed by ITOFF:

 STL
 LDF

ITOFx Ra.rq,Fc.wq !Floating-point Operate format

None

ITOFF Integer to Floating-point Register Move, F_floating

ITOFS Integer to Floating-point Register Move, S_floating
ITOFT Integer to Floating-point Register Move, T_floating

None
 4–124 Alpha Architecture Handbook

ITOFS is exactly equivalent to the sequence:

 STL
 LDS

ITOFT is exactly equivalent to the sequence:

 STQ
 LDT

Software Note:

ITOFF, ITOFS, and ITOFT are no slower than the corresponding store/load sequence and
can be significantly faster.
Instruction Descriptions 4–125

4.10.20 VAX Floating Multiply

Format:

Operation:
Fc ← Fav * Fbv

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
The multiplicand operand in register Fb is multiplied by the multiplier operand in register Fa
and the product is written to register Fc.

The product is rounded or chopped to the specified precision and then the corresponding range
is checked for overflow/underflow. The single-precision operation on canonical single-preci-
sion values produces a canonical single-precision result.

An invalid operation trap is signaled if either operand has exp=0 and is not a true zero (that is,
VAX reserved operands and dirty zeros trap). The contents of Fc are UNPREDICTABLE if
this occurs.

See Section 4.7.7 for details of the stored result on overflow or underflow.

MULx Fa.rx,Fb.rx,Fc.wx !Floating-point Operate format

Invalid Operation
Overflow

Underflow

MULF Multiply F_floating
MULG Multiply G_floating

Rounding: Chopped (/C)

Trapping: Exception Completion (/S)
Underflow Enable (/U)
 4–126 Alpha Architecture Handbook

4.10.21 IEEE Floating Multiply

Format:

Operation:
Fc ← Fav * Fbv

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
The multiplicand operand in register Fb is multiplied by the multiplier operand in register Fa
and the product is written to register Fc.

The product is rounded to the specified precision and then the corresponding range is checked
for overflow/underflow. The single-precision operation on canonical single-precision values
produces a canonical single-precision result.

See Section 4.7.7 for details of the stored result on overflow, underflow, or inexact result.

MULx Fa.rx,Fb.rx,Fc.wx !Floating-point Operate format

Invalid Operation
Overflow

Underflow
Inexact Result

MULS Multiply S_floating

MULT Multiply T_floating

Rounding: Dynamic (/D)
Minus infinity (/M)

Chopped (/C)
Trapping: Exception Completion (/S)

Underflow Enable (/U)
Inexact Enable (/I)
Instruction Descriptions 4–127

4.10.22 VAX Floating Square Root

Format:

Operation:
Fc ← Fb ** (1/2)

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

The square root of the floating-point operand in register Fb is written to register Fc. (The Fa
field of this instruction must be set to a value of F31.)

The result is rounded or chopped to the specified precision. The single-precision operation on a
canonical single-precision value produces a canonical single-precision result.

An invalid operation is signaled if the operand has exp=0 and is not a true zero (that is, VAX
reserved operands and dirty zeros trap). An invalid operation is signaled if the sign of the oper-
and is negative.

The contents of the Fc are UNPREDICTABLE if an invalid operation is signaled.

Notes:

• Floating-point overflow and underflow are not possible for square root operation. The
underflow enable qualifier is ignored.

SQRTx Fb.rx,Fc.wx !Floating-point Operate format

Invalid operation

SQRTF Square root F_floating

SQRTG Square root G_floating

Rounding: Chopped (/C)
Trapping: Exception Completion (/S)

Underflow Enable (/U) — See Notes below
 4–128 Alpha Architecture Handbook

4.10.23 IEEE Floating Square Root

Format:

Operation:
Fc ← Fb ** (1/2)

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
The square root of the floating-point operand in register Fb is written to register Fc. (The Fa
field of this instruction must be set to a value of F31.)

The result is rounded to the specified precision. The single-precision operation on a canonical
single-precision value produces a canonical single-precision result.

An invalid operation is signaled if the sign of the operand is less than zero. However, SQRT
(–0) produces a result of –0.

Notes:

• Floating-point overflow and underflow are not possible for square root operation. The
underflow enable qualifier is ignored.

SQRTx Fb.rx,Fc.wx !Floating-point Operate format

Inexact result
Invalid operation

SQRTS Square root S_floating

SQRTT Square root T_floating

Rounding: Chopped (/C)
Dynamic (/D)

Minus infinity (/M)
Trapping: Inexact Enable (/I)

Exception Completion (/S)
Underflow Enable (/U) — See Notes below
Instruction Descriptions 4–129

4.10.24 VAX Floating Subtract

Format:

Operation:
Fc ← Fav - Fbv

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
The subtrahend operand in register Fb is subtracted from the minuend operand in register Fa
and the difference is written to register Fc.

The difference is rounded or chopped to the specified precision and then the corresponding
range is checked for overflow/underflow. The single-precision operation on canonical sin-
gle-precision values produces a canonical single-precision result.

An invalid operation trap is signaled if either operand has exp=0 and is not a true zero (that is,
VAX reserved operands and dirty zeros trap). The contents of Fc are UNPREDICTABLE if
this occurs.

See Section 4.7.7 for details of the stored result on overflow or underflow.

SUBx Fa.rx,Fb.rx,Fc.wx !Floating-point Operate format

Invalid Operation
Overflow

Underflow

SUBF Subtract F_floating
SUBG Subtract G_floating

Rounding: Chopped (/C)

Trapping: Exception Completion (/S)
Underflow Enable (/U)
 4–130 Alpha Architecture Handbook

4.10.25 IEEE Floating Subtract

Format:

Operation:
Fc ← Fav - Fbv

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
The subtrahend operand in register Fb is subtracted from the minuend operand in register Fa
and the difference is written to register Fc.

The difference is rounded to the specified precision and then the corresponding range is
checked for overflow/underflow. The single-precision operation on canonical single-precision
values produces a canonical single-precision result.

See Section 4.7.7 for details of the stored result on overflow, underflow, or inexact result.

SUBx Fa.rx,Fb.rx,Fc.wx !Floating-point Operate format

Invalid Operation
Overflow

Underflow
Inexact Result

SUBS Subtract S_floating

SUBT Subtract T_floating

Rounding: Dynamic (/D)
Minus infinity (/M)

Chopped (/C)
Trapping: Exception Completion (/S)

Underflow Enable (/U)
Inexact Enable (/I)
Instruction Descriptions 4–131

4.11 Miscellaneous Instructions

Alpha provides the miscellaneous instructions shown in Table 4–17.

Table 4–17: Miscellaneous Instructions Summary

Mnemonic Operation

AMASK Architecture Mask

CALL_PAL Call Privileged Architecture Library Routine

ECB Evict Cache Block

EXCB Exception Barrier

FETCH Prefetch Data

FETCH_M Prefetch Data, Modify Intent

IMPLVER Implementation Version

MB Memory Barrier

RPCC Read Processor Cycle Counter

TRAPB Trap Barrier

WH64 Write Hint — 64 Bytes

WMB Write Memory Barrier
 4–132 Alpha Architecture Handbook

xten-

LE

ning
4.11.1 Architecture Mask

Format:

Operation:
Rc ← Rbv AND {NOT CPU_feature_mask}

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

Rbv represents a mask of the requested architectural extensions. Bits are cleared that corre-
spond to architectural extensions that are present. Reserved bits and bits that correspond to
absent extensions are copied unchanged. In either case, the result is placed in Rc. If the result
is zero, all requested features are present.

Software may specify an Rbv of all 1’s to determine the complete set of architectural e
sions implemented by a processor. Assigned bit definitions are located in Section D.3.

Ra must be R31 or the result in Rc is UNPREDICTABLE and it is UNPREDICTAB
whether an exception is signaled.

Software Note:

Use this instruction to make instruction-set decisions; use IMPLVER to make code-tu
decisions.

Implementation Note:
Instruction encoding is implemented as follows:

• On 21064/21064A/21066/21068/21066A (EV4/EV45/LCA/LCA45 chips), AMASK
copies Rbv to Rc.

• On 21164 (EV5), AMASK copies Rbv to Rc.

AMASK Rb.rq,Rc.wq !Operate format

AMASK #b.ib,Rc.wq !Operate format

None

AMASK Architecture Mask

None
Instruction Descriptions 4–133

• On 21164A (EV56), 21164PC (PCA56), and 21264 (EV6), AMASK correctly indicates
support for architecture extensions by copying Rbv to Rc and clearing appropriate bits.

Bits are assigned and placed in Appendix D for architecture extensions as ECOs for those
extensions are passed. The low 8 bits are reserved for standard architecture extensions so
they can be tested with a literal; application-specific extensions are assigned from bit 8
upward.
 4–134 Alpha Architecture Handbook

4.11.2 Call Privileged Architecture Library

Format:

Operation:
{Stall instruction issuing until all
prior instructions are guaranteed to
complete without incurring exceptions.}
{Trap to PALcode.}

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
The CALL_PAL instruction is not issued until all previous instructions are guaranteed to com-
plete without exceptions. If an exception occurs, the continuation PC in the exception stack
frame points to the CALL_PAL instruction. The CALL_PAL instruction causes a trap to
PALcode.

CALL_PAL fnc.ir !PAL format

None

CALL_PAL Call Privileged Architecture Library

None
Instruction Descriptions 4–135

cache
4.11.3 Evict Data Cache Block

Format:

Operation:
va ← Rbv

IF { va maps to memory space } THEN
 Prepare to reuse cache resources that are occupied by the
 the addressed byte.
END

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
The ECB instruction provides a hint that the addressed location will not be referenced again in
the near future, so any cache space it occupies should be made available to cache other mem-
ory locations. If the cache copy of the location is dirty, the processor may start writing it back;
if the cache has multiple sets, the processor may arrange for the set containing the addressed
byte to be the next set allocated.

The ECB instruction does not generate exceptions; if it encounters data address translation
errors (access violation, translation not valid, and so forth) during execution, it is treated as a
NOP.

If the address maps to non-memory-like (I/O) space, ECB is treated as a NOP.

Software Note:

• ECB makes a particular cache location available for reuse by evicting and invalidating
its contents. The intent is to give software more control over cache allocation policy in
set-associative caches so that "useful" blocks can be retained in the cache.

• ECB is a performance hint — it does not serialize the eviction of the addressed
block with any preceding or following memory operation.

ECB (Rb.ab) ! Memory format

None

ECB Evict Cache Block

None
 4–136 Alpha Architecture Handbook

cation
 line is
• ECB is not intended for flushing caches prior to power failure or low power operation
— CFLUSH is intended for that purpose.

Implementation Note:
Implementations with set-associative caches are encouraged to update their allo
pointer so that the next D-stream reference that misses the cache and maps to this
allocated into the vacated set.
Instruction Descriptions 4–137

4.11.4 Exception Barrier

Format:

Operation:
{EXCB does not appear to issue until completion of all
 exceptions and dependencies on the Floating-point Control
 Register (FPCR) from prior instructions.}

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
The EXCB instruction allows software to guarantee that in a pipelined implementation, all pre-
vious instructions have completed any behavior related to exceptions or rounding modes before
any instructions after the EXCB are issued.

In particular, all changes to the Floating-point Control Register (FPCR) are guaranteed to have
been made, whether or not there is an associated exception. Also, all potential floating-point
exceptions and integer overflow exceptions are guaranteed to have been taken. EXCB is thus a
superset of TRAPB.

If a floating-point exception occurs for which trapping is enabled, the EXCB instruction acts
like a fault. In this case, the value of the Program Counter reported to the program may be the
address of the EXCB instruction (or earlier) but is never the address of an instruction follow-
ing the EXCB.

The relationship between EXCB and the FPCR is described in Section 4.7.8.1.

EXCB ! Memory format

None

EXCB Exception Barrier

None
 4–138 Alpha Architecture Handbook

4.11.5 Prefetch Data

Format:

Operation:
va ← {Rbv}
{Optionally prefetch aligned 512-byte block surrounding va.}

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
The virtual address is given by Rbv. This address is used to designate an aligned 512-byte
block of data. An implementation may optionally attempt to move all or part of this block (or a
larger surrounding block) of data to a part of the memory hierarchy that has faster-access, in
anticipation of subsequent Load or Store instructions that access that data.

Implementation Note:
FETCHx is intended to help software overlap memory latencies when such latencies are on
the order of at least 100 cycles. FETCHx is unlikely to help (or be implemented) for
significantly shorter memory latencies. Code scheduling and cache-line prefetching (See
Section A.3.5) should be used to overlap such shorter latencies.

Existing Alpha implementations (through the 21264) have memory latencies that are too
short to profitably implement FETCHx. Therefore, FETCHx does not improve memory
performance in existing Alpha implementations.

The FETCH instruction is a hint to the implementation that may allow faster execution. An
implementation is free to ignore the hint. If prefetching is done in an implementation, the order
of fetch within the designated block is UNPREDICTABLE.

The FETCH_M instruction gives the additional hint that modifications (stores) to some or all
of the data block are anticipated.

FETCHx 0(Rb.ab) !Memory format

None

FETCH Prefetch Data

FETCH_M Prefetch Data, Modify Intent

None
Instruction Descriptions 4–139

No exceptions are generated by FETCHx. If a Load (or Store in the case of FETCH_M) that
uses the same address would fault, the prefetch request is ignored. It is UNPREDICTABLE
whether a TB-miss fault is ever taken by FETCHx.

Implementation Note:
Implementations are encouraged to take the TB-miss fault, then continue the prefetch.
 4–140 Alpha Architecture Handbook

4.11.6 Implementation Version

Format:

Operation:
Rc ← value, which is defined in Appendix D

Exceptions:

Instruction mnemonics:

Description:
A small integer is placed in Rc that specifies the major implementation version of the proces-
sor on which it is executed. This information can be used to make code-scheduling or tuning
decisions, or the information can be used to branch to different pieces of code optimized for
different implementations.

Notes:

• The value returned by IMPLVER does not identify the particular processor type.
Rather, it identifies a group of processors that can be treated similarly for performance
characteristics such as scheduling. Ra must be R31 and Rb must be the literal #1 or the
result in Rc is UNPREDICTABLE and it is UNPREDICTABLE whether an exception
is signaled.

Software Note:
Use this instruction to make code-tuning decisions; use AMASK to make instruction-set
decisions.

IMPLVER Rc !Operate format

None

IMPLVER Implementation Version
Instruction Descriptions 4–141

4.11.7 Memory Barrier

Format:

Operation:
{Guarantee that all subsequent loads or stores
will not access memory until after all previous
loads and stores have accessed memory, as
observed by other processors.}

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
The use of the Memory Barrier (MB) instruction is required only in multiprocessor systems.

In the absence of an MB instruction, loads and stores to different physical locations are
allowed to complete out of order on the issuing processor as observed by other processors. The
MB instruction allows memory accesses to be serialized on the issuing processor as observed
by other processors. See Chapter 5 for details on using the MB instruction to serialize these
accesses. Chapter 5 also details coordinating memory accesses across processors.

Note that MB ensures serialization only; it does not necessarily accelerate the progress of
memory operations.

MB !Memory format

None

MB Memory Barrier

None
 4–142 Alpha Architecture Handbook

4.11.8 Read Processor Cycle Counter

Format:

Operation:
Ra ← {cycle counter}

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
Register Ra is written with the processor cycle counter (PCC). The PCC register consists of
two 32-bit fields. The low-order 32 bits (PCC<31:0>) are an unsigned, wrapping counter,
PCC_CNT. The high-order 32 bits (PCC<63:32>), PCC_OFF, are operating-system depen-
dent in their implementation.

See Section 3.1.5 for a description of the PCC.

If an operating system uses PCC_OFF to calculate the per-process or per-thread cycle count,
that count must be derived from the 32-bit sum of PCC_OFF and PCC_CNT. The following
example computes that cycle count, modulo 2**32, and returns the count value in R0. Notice
the care taken not to cause an unwanted sign extension.

 RPCC R0 ; Read the process cycle counter
 SLL R0, #32, R1 ; Line up the offset and count fields
 ADDQ R0, R1, R0 ; Do add
 SRL R0, #32, R0 ; Zero extend the count to 64 bits

The following example code returns the value of PCC_CNT in R0<31:0> and all zeros in
R0<63:32>.

 RPCC R0
 ZAPNOT R0,#15,R0

RPCC Ra.wq !Memory format

None

RPCC Read Processor Cycle Counter

None
Instruction Descriptions 4–143

4.11.9 Trap Barrier

Format:

Operation:
{TRAPB does not appear to issue until all prior instructions
 are guaranteed to complete without causing any arithmetic traps}.

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
The TRAPB instruction allows software to guarantee that in a pipelined implementation, all
previous arithmetic instructions will complete without incurring any arithmetic traps before the
TRAPB or any instructions after it are issued.

If an arithmetic exception occurs for which trapping is enabled, the TRAPB instruction acts
like a fault. In this case, the value of the Program Counter reported to the program may be the
address of the TRAPB instruction (or earlier) but is never the address of the instruction follow-
ing the TRAPB.

This fault behavior by TRAPB allows software, using one TRAPB instruction for each excep-
tion domain, to isolate the address range in which an exception occurs. If the address of the
instruction following the TRAPB were allowed, there would be no way to distinguish an
exception in the address range preceding a label from an exception in the range that includes
the label along with the faulting instruction and a branch back to the label. This case arises
when the code is not following exception completion rules but is inserting TRAPB instruc-
tions to isolate exceptions to the proper scope.

Use of TRAPB should be compared with use of the EXCB instruction; see Section 4.11.4.

TRAPB !Memory format

None

TRAPB Trap Barrier

None
 4–144 Alpha Architecture Handbook

4.11.10 Write Hint

Format:

Operation:
va ← Rbv
IF { va maps to memory space } THEN
 Write UNPREDICTABLE data to the aligned 64-byte region
 containing the addressed byte.
END

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
The WH64 instruction provides a hint that the current contents of the aligned 64-byte block
containing the addressed byte will never be read again but will be overwritten in the near
future.

The processor may allocate cache resources to hold the block without reading its previous con-
tents from memory; the contents of the block may be set to any value that does not introduce a
security hole, as described in Section 1.6.3.

The WH64 instruction does not generate exceptions; if it encounters data address translation
errors (access violation, translation not valid, and so forth), it is treated as a NOP.

If the address maps to non-memory-like (I/O) space, WH64 is treated as a NOP.

Software Note:
This instruction is a performance hint that should be used when writing a large continuous
region of memory. The intended code sequence consists of one WH64 instruction followed
by eight quadword stores for each aligned 64-byte region to be written.

Sometimes, the UNPREDICTABLE data will exactly match some or all of the previous
contents of the addressed block of memory.

WH64 (Rb.ab) ! Memory format

None

WH64 Write Hint - 64 Bytes

None
Instruction Descriptions 4–145

Implementation Note:

If the 64-byte region containing the addressed byte is not in the data cache,
implementations are encouraged to allocate the region in the data cache without first
reading it from memory. However, if any of the addressed bytes exist in the caches of
other processors, they must be kept coherent with respect to those processors.

Processors with cache blocks smaller than 64 bytes are encouraged to implement WH64 as
defined. However, they may instead implement the instruction by allocating a smaller
aligned cache block for write access or by treating WH64 as a NOP.

Processors with cache blocks larger than 64 bytes are also encouraged to implement WH64
as defined. However, they may instead treat WH64 as a NOP.
 4–146 Alpha Architecture Handbook

4.11.11 Write Memory Barrier

Format:

Operation:
{ Guarantee that
{ All preceding stores that access memory-like
{ regions are ordered before any subsequent stores
{ that access memory-like regions and
{ All preceding stores that access non-memory-like
{ regions are ordered before any subsequent stores
{ that access non-memory-like regions.

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
The WMB instruction provides a way for software to control write buffers. It guarantees that
writes preceding the WMB are not aggregated with writes that follow the WMB.

WMB guarantees that writes to memory-like regions that precede the WMB are ordered before
writes to memory-like regions that follow the WMB. Similarly, WMB guarantees that writes to
non-memory-like regions that precede the WMB are ordered before writes to non-mem-
ory-like regions that follow the WMB. It does not order writes to memory-like regions relative
to writes to non-memory-like regions.

WMB causes writes that are contained in buffers to be completed without unnecessary delay. It
is particularly suited for batching writes to high-performance I/O devices.

WMB prevents writes that precede the WMB from being merged with writes that follow the
WMB. In particular, two writes that access the same location and are separated by a WMB
cause two distinct and ordered write events.

In the absence of a WMB (or IMB or MB) instruction, stores to memory-like or non-mem-
ory-like regions can be aggregated and/or buffered and completed in any order.

WMB !Memory format

None

WMB Write Memory Barrier

None
Instruction Descriptions 4–147

The WMB instruction is the preferred method for providing high-bandwidth write streams
where order must be preserved between writes in that stream.

Notes:

WMB is useful for ordering streams of writes to a non-memory-like region, such as to mem-
ory-mapped control registers or to a graphics frame buffer. While both MB and WMB can
ensure that writes to a non-memory-like region occur in order, without being aggregated or
reordered, the WMB is usually faster and is never slower than MB.

WMB can correctly order streams of writes in programs that operate on shared sections of data
if the data in those sections are protected by a classic semaphore protocol. The following
example illustrates such a protocol:

The example above is similar to that in Section 5.5.4, except a WMB is substituted for the sec-
ond MB in the lock-update-release sequence. It is correct to substitute WMB for the second
MB only if:

1. All data locations that are read or written in the critical section are accessed only after
acquiring a software lock by using lock_variable (and before releasing the software
lock).

2. For each read u of shared data in the critical section, there is a write v such that:

a. v is BEFORE the WMB

b. v follows u in processor issue sequence (see Section 5.6.1.1)

c. v either depends on u (see Section 5.6.1.7) or overlaps u (see Section 5.6.1), or
both.

3. Both lock_variable and all the shared data are in memory-like regions (or lock_variable
and all the shared data are in non-memory-like regions). If the lock_variable is in a
non-memory-like region, the atomic lock protocol must use some implementation-spe-
cific hardware support.

The substitution of a WMB for the second MB is usually faster and never slower.

Processor i Processor j

<Acquire lock>

MB

<Read and write data
in shared section>

WMB

<Release lock> ⇒ <Acquire lock>

MB

<Read and write data in shared section>

WMB
 4–148 Alpha Architecture Handbook

hese
some
t VAX

 they
 work.
4.12 VAX Compatibility Instructions

Alpha provides the instructions shown in Table 4–18 for use in translated VAX code. T
instructions are not a permanent part of the architecture and will not be available in
future implementations. They are intended to preserve customer assumptions abou
instruction atomicity in porting code from VAX to Alpha.

These instructions should be generated only by the VAX-to-Alpha software translator;
should never be used in native Alpha code. Any native code that uses them may cease to

Table 4–18: VAX Compatibility Instructions Summary

Mnemonic Operation

RC Read and Clear

RS Read and Set
Instruction Descriptions 4–149

 exe-
4.12.1 VAX Compatibility Instructions

Format:

Operation:
Ra ← intr_flag
intr_flag ← 0 !RC
intr_flag ← 1 !RS

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
The intr_flag is returned in Ra and then cleared to zero (RC) or set to one (RS).

These instructions may be used to determine whether the sequence of Alpha instructions
between RS and RC (corresponding to a single VAX instruction) was executed without inter-
ruption or exception.

Intr_flag is a per-processor state bit. The intr_flag is cleared if that processor encounters a
CALL_PAL REI instruction.

It is UNPREDICTABLE whether a processor’s intr_flag is affected when that processor
cutes an LDx_L or STx_C instruction. A processor’s intr_flag is not affected when that
processor executes a normal load or store instruction.

A processor’s intr_flag is not affected when that processor executes a taken branch.

Notes:

• These instructions are intended only for use by the VAX-to-Alpha software translator;
they should never be used by native code.

Rx Ra.wq !Memory format

None

RC Read and Clear

RS Read and Set

None
 4–150 Alpha Architecture Handbook

4.13 Multimedia (Graphics and Video) Support

Alpha provides the following instructions that enhance support for graphics and video
algorithms:

The MIN and MAX instructions allow the clamping of pixel values to maximium values that
are allowed in different standards and stages of the CODECs.

The PERR instruction accelerates the macroblock search in motion estimation.

The pack and unpack (PKxB and UNPKBx) instructions accelerate the blocking of interleaved
YUV coordinates for processing by the CODEC.

Implementation Note:
Alpha processors for which the AMASK instruction returns bit 8 set implement these
instructions. Those processors for which AMASK does not return bit 8 set can take an
Illegal Instruction trap, and software can emulate their function, if required.

Mnemonic Operation

MINUB8 Vector Unsigned Byte Minimum

MINSB8 Vector Signed Byte Minimum

MINUW4 Vector Unsigned Word Minimum

MINSW4 Vector Signed Word Minimum

MAXUB8 Vector Unsigned Byte Maximum

MAXSB8 Vector Signed Byte Maximum

MAXUW4 Vector Unsigned Word Maximum

MAXSW4 Vector Signed Word Maximum

PERR Pixel Error

PKLB Pack Longwords to Bytes

PKWB Pack Words to Bytes

UNPKBL Unpack Bytes to Longwords

UNPKBW Unpack Bytes to Words
Instruction Descriptions 4–151

4.13.1 Byte and Word Minimum and Maximum

Format:

Operation:
CASE
 MINUB8:
 FOR i FROM 0 TO 7
 Rcv<i*8+7:i*8> = MINU(Rav<i*8+7:i*8>,Rbv<i*8+7:i*8>)
 END
 MINSB8:
 FOR i FROM 0 TO 7
 Rcv<i*8+7:i*8> = MINS(Rav<i*8+7:i*8>,Rbv<i*8+7:i*8>)
 END
 MINUW4:
 FOR i FROM 0 TO 3
 Rcv<i*16+15:i*16> = MINU(Rav<i*16+15:i*16>,Rbv<i*16+15:i*16>)
 END
 MINSW4:
 FOR i FROM 0 TO 3
 Rcv<i*16+15:i*16> = MINS(Rav<i*16+15:i*16>,Rbv<i*16+15:i*16>)
 END
 MAXUB8:
 FOR i FROM 0 TO 7
 Rcv<i*8+7:i*8> = MAXU(Rav<i*8+7:i*8>,Rbv<i*8+7:i*8>)
 END
 MAXSB8:
 FOR i FROM 0 TO 7
 Rcv<i*8+7:i*8> = MAXS(Rav<i*8+7:i*8>,Rbv<i*8+7:i*8>)
 END
 MAXUW4:
 FOR i FROM 0 TO 3
 Rcv<i*16+15:i*16> = MAXU(Rav<i*16+15:i*16>,Rbv<i*16+15:i*16>)
 END
 MAXSW4:
 FOR i FROM 0 TO 3
 Rcv<i*16+15:i*16> = MAXS(Rav<i*16+15:i*16>,Rbv<i*16+15:i*16>)
 END
ENDCASE:

Exceptions:

MINxxx Ra.rq,Rb.rq,Rc.wq
Ra.rq,#b.ib,Rc.wq

! Operate Format

MAXxxx Ra.rq,Rb.rq,Rc.wq
Ra.rq,#b.ib,Rc.wq

! Operate Format

None
 4–152 Alpha Architecture Handbook

Instruction mnemonics:

Qualifiers:

Description:
For MINxB8, each byte of Rc is written with the smaller of the corresponding bytes of Ra or
Rb. The bytes may be interpreted as signed or unsigned values.

For MINxW4, each word of Rc is written with the smaller of the corresponding words of Ra or
Rb. The words may be interpreted as signed or unsigned values.

For MAXxB8, each byte of Rc is written with the larger of the corresponding bytes of Ra or
Rb. The bytes may be interpreted as signed or unsigned values.

For MAXxW4, each word of Rc is written with the larger of the corresponding words of Ra or
Rb. The words may be interpreted as signed or unsigned values.

MINUB8 Vector Unsigned Byte Minimum
MINSB8 Vector Signed Byte Minimum

MINUW4 Vector Unsigned Word Minimum
MINSW4 Vector Signed Word Minimum

MAXUB8 Vector Unsigned Byte Maximum
MAXSB8 Vector Signed Byte Maximum

MAXUW4 Vector Unsigned Word Maximum
MAXSW4 Vector Signed Word Maximum

None
Instruction Descriptions 4–153

4.13.2 Pixel Error

Format:

Operation:
temp = 0
FOR i FROM 0 TO 7
 IF { Rav<i*8+7:i*8> GEU Rbv<i*8+7:i*8>} THEN
 temp ← temp + (Rav<i*8+7:i*8> - Rbv<i*8+7:i*8>)
 ELSE
 temp ← temp + (Rbv<i*8+7:i*8> - Rav<i*8+7:i*8>)
END
Rc ← temp

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
The absolute value of the difference between each of the bytes in Ra and Rb is calculated. The
sum of the resulting bytes is written to Rc.

PERR Ra.rq,Rb.rq,Rc.wq ! Operate Format

None

PERR Pixel Error

None
 4–154 Alpha Architecture Handbook

4.13.3 Pack Bytes

Format:

Operation:
CASE
 PKLB:
 BEGIN
 Rc<07:00> ← Rbv<07:00>
 Rc<15:08> ← Rbv<39:32>
 Rc<63:16> ← 0
 END
 PKWB:
 BEGIN
 Rc<07:00> ← Rbv<07:00>
 Rc<15:08> ← Rbv<23:16>
 Rc<23:16> ← Rbv<39:32>
 Rc<31:24> ← Rbv<55:48>
 Rc<63:32> ← 0
 END
ENDCASE

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:
For PKLB, the component longwords of Rb are truncated to bytes and written to the lower two
byte positions of Rc. The upper six bytes of Rc are written with zero.

For PKWB, the component words of Rb are truncated to bytes and written to the lower four
byte positions of Rc. The upper four bytes of Rc are written with zero.

PKxB Rb.rq,Rc.wq ! Operate Format

None

PKLB Pack Longwords to Bytes

PKWB Pack Words to Bytes

None
Instruction Descriptions 4–155

4.13.4 Unpack Bytes

Format:

Operation:
temp = 0
CASE
 UNPKBL:
 BEGIN
 temp<07:00> = Rbv<07:00>
 temp<39:32> = Rbv<15:08>
 END
 UNPKBW:
 BEGIN
 temp<07:00> = Rbv<07:00>
 temp<23:16> = Rbv<15:08>
 temp<39:32> = Rbv<23:16>
 temp<55:48> = Rbv<31:24>
 END
ENDCASE
Rc ← temp

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

For UNPKBL, the lower two component bytes of Rb are zero-extended to longwords. The
resulting longwords are written to Rc.

For UNPKBW, the lower four component bytes of Rb are zero-extended to words. The result-
ing words are written to Rc.

UNPKBx Rb.rq,Rc.wq ! Operate Format

None

UNPKBL Unpack Bytes to Longwords

UNPKBW Unpack Bytes to Words

None
 4–156 Alpha Architecture Handbook

